全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2011 

Automated Microinjection of Recombinant BCL-X into Mouse Zygotes Enhances Embryo Development

DOI: 10.1371/journal.pone.0021687

Full-Text   Cite this paper   Add to My Lib

Abstract:

Progression of fertilized mammalian oocytes through cleavage, blastocyst formation and implantation depends on successful implementation of the developmental program, which becomes established during oogenesis. The identification of ooplasmic factors, which are responsible for successful embryo development, is thus crucial in designing possible molecular therapies for infertility intervention. However, systematic evaluation of molecular targets has been hampered by the lack of techniques for efficient delivery of molecules into embryos. We have developed an automated robotic microinjection system for delivering cell impermeable compounds into preimplantation embryos with a high post-injection survival rate. In this paper, we report the performance of the system on microinjection of mouse embryos. Furthermore, using this system we provide the first evidence that recombinant BCL-XL (recBCL-XL) protein is effective in preventing early embryo arrest imposed by suboptimal culture environment. We demonstrate that microinjection of recBCL-XL protein into early-stage embryos repairs mitochondrial bioenergetics, prevents reactive oxygen species (ROS) accumulation, and enhances preimplantation embryo development. This approach may lead to a possible treatment option for patients with repeated in vitro fertilization (IVF) failure due to poor embryo quality.

References

[1]  Ziebe S, Petersen K, Lindenberg S, Andersen AG, Gabrielsen A, et al. (1997) Embryo morphology or cleavage stage: how to select the best embryos for transfer after in-vitro fertilization. Hum Reprod 12: 1545–1549.
[2]  Hardy K, Stark J (2002) Mathematical models of the balance between apoptosis and proliferation. Apoptosis 7: 373–381.
[3]  Hardy K, Spanos S, Becker D, Iannelli P, Winston RM, et al. (2001) From cell death to embryo arrest: mathematical models of human preimplantation embryo development. Proc Natl Acad Sci U S A 98: 1655–1660.
[4]  Goddard MJ, Pratt HP (1983) Control of events during early cleavage of the mouse embryo: an analysis of the '2-cell block'. J Embryol Exp Morphol 73: 111–133.
[5]  Maleszewski M, Borsuk E, Koziak K, Maluchnik D, Tarkowski AK (1999) Delayed sperm incorporation into parthenogenetic mouse eggs: sperm nucleus transformation and development of resulting embryos. Mol Reprod Dev 54: 303–310.
[6]  Muggleton-Harris A, Whittingham DG, Wilson L (1982) Cytoplasmic control of preimplantation development in vitro in the mouse. Nature 299: 460–462.
[7]  Cohen J, Scott R, Schimmel T, Levron J, Willadsen S (1997) Birth of infant after transfer of anucleate donor oocyte cytoplasm into recipient eggs. Lancet 350: 186–187.
[8]  Barritt J, Willadsen S, Brenner C, Cohen J (2001) Cytoplasmic transfer in assisted reproduction. Hum Reprod Update 7: 428–435.
[9]  Barritt JA, Brenner CA, Malter HE, Cohen J (2001) Mitochondria in human offspring derived from ooplasmic transplantation. Hum Reprod 16: 513–516.
[10]  Acton BM, Lai I, Shang X, Jurisicova A, Casper RF (2007) Neutral mitochondrial heteroplasmy alters physiological function in mice. Biol Reprod 77: 569–576.
[11]  Sun Y, Nelson BJ (2002) Biological Cell Injection Using an Autonomous MicroRobotic System. The International Journal of Robotics Research 21: 861–868.
[12]  Kumar R, Kapoor A, Taylor RH (2003) Preliminary experiments in robot/human cooperative microinjection; IEEE International Conference on Intelligent Robots and Systems (IROS 2003),Las Vegas, Nevada: 27–31. 2003.
[13]  Kim DH, Sun Y, Yun S, Lee SH, Kim B (2005) Investigating chorion softening of zebrafish embryos with a microrobotic force sensing system. J Biomech 38: 1359–1353.
[14]  Cornell E, Fisher WW, Nordmeyer R, Yegian D, Dong M, et al. (2008) Automating fruit fly Drosophila embryo injection for high throughput transgenic studies. Review of Scientific Instruments 79: 013705–013707.
[15]  Wang WH, Liu XY, Sun Y (2007) Contact Detection in Microrobotic Manipulation. The International Journal of Robotics Research 26: 821–828.
[16]  Wang W, Liu X, Gelinas D, Ciruna B, Sun Y (2007) A Fully Automated Robotic System for Microinjection of Zebrafish Embryos. PLoS ONE 2: e862.
[17]  Wang W, Sun Y, Zhang M, Anderson R, Langille L, et al. (2008) A system for high-speed microinjection of adherent cells. Review of Scientific Instruments 79: 104302.
[18]  Mattos LS, Grant E, Thresher R, Kluckman K (2009) Blastocyst Microinjection Automation. Ieee Transactions on Information Technology in Biomedicine 13: 822–831.
[19]  Liu X, Sun Y (2009) Microfabricated glass devices for rapid single cell immobilization in mouse zygote microinjection. Biomed Microdevices 11: 1169–1174.
[20]  Liu X, Sun Y (2009) Automated mouse embryo injection moves toward practical use. IEEE International Conference on Robotics and Automation (ICRA2009),. Kobe, Japan: pp. 12–17. 2009.
[21]  Suzuki O, Asano T, Yamamoto Y, Takano K, Koura M (1996) Development in vitro of preimplantation embryos from 55 mouse strains. Reprod Fertil Dev 8: 975–980.
[22]  Muggleton-Harris AL, Brown JJ (1988) Cytoplasmic factors influence mitochondrial reorganization and resumption of cleavage during culture of early mouse embryos. Hum Reprod 3: 1020–1028.
[23]  Jurisicova A, Antenos M, Varmuza S, Tilly JL, Casper RF (2003) Expression of apoptosis-related genes during human preimplantation embryo development: potential roles for the Harakiri gene product and Caspase-3 in blastomere fragmentation. Mol Hum Reprod 9: 133–141.
[24]  Jurisicova A, Latham KE, Casper RF, Varmuza SL (1998) Expression and regulation of genes associated with cell death during murine preimplantation embryo development. Mol Reprod Dev 51: 243–253.
[25]  Riedlinger G, Okagaki R, Wagner KU, Rucker EB, 3rd , Oka T, et al. (2002) Bcl-x is not required for maintenance of follicles and corpus luteum in the postnatal mouse ovary. Biol Reprod 66: 438–444.
[26]  Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, et al. (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111: 331–342.
[27]  Ruder EH, Hartman TJ, Blumberg J, Goldman MB (2008) Oxidative stress and antioxidants: exposure and impact on female fertility. Hum Reprod Update 14: 345–357.
[28]  Betts DH, Madan P (2008) Permanent embryo arrest: molecular and cellular concepts. Mol Hum Reprod 14: 445–453.
[29]  Gottlieb E, Vander Heiden MG, Thompson CB (2000) Bcl-x(L) prevents the initial decrease in mitochondrial membrane potential and subsequent reactive oxygen species production during tumor necrosis factor alpha-induced apoptosis. Mol Cell Biol 20: 5680–5689.
[30]  Favetta LA, Madan P, Mastromonaco GF, St John EJ, King WA, et al. (2007) The oxidative stress adaptor p66Shc is required for permanent embryo arrest in vitro. BMC Dev Biol 7: 132.
[31]  Favetta LA, St John EJ, King WA, Betts DH (2007) High levels of p66shc and intracellular ROS in permanently arrested early embryos. Free Radic Biol Med 42: 1201–1210.
[32]  Berman SB, Chen YB, Qi B, McCaffery JM, Rucker EB, 3rd , et al. (2009) Bcl-x L increases mitochondrial fission, fusion, and biomass in neurons. J Cell Biol 184: 707–719.
[33]  Vander Heiden MG, Choy JS, VanderWeele DJ, Brace JL, Harris MH, et al. (2002) Bcl-x(L) complements Saccharomyces cerevisiae genes that facilitate the switch from glycolytic to oxidative metabolism. J Biol Chem 277: 44870–44876.
[34]  Acton BM, Jurisicova A, Jurisica I, Casper RF (2004) Alterations in mitochondrial membrane potential during preimplantation stages of mouse and human embryo development. Mol Hum Reprod 10: 23–32.
[35]  Wilding M, Dale B, Marino M, di Matteo L, Alviggi C, et al. (2001) Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum Reprod 16: 909–917.
[36]  Gardner DK, Leese HJ (1986) Non-invasive measurement of nutrient uptake by single cultured pre-implantation mouse embryos. Hum Reprod 1: 25–27.
[37]  Civico S, Agell N, Hernandez L, Campo E, Bachs O, et al. (2008) Increased messenger ribonucleic acid expression of the cyclin-dependent kinase inhibitor p27Kip1 in cleavage-stage human embryos exhibiting developmental arrest. Fertil Steril 89: 1557–1562.
[38]  Guillemin Y, Lalle P, Gillet G, Guerin JF, Hamamah S, et al. (2009) Oocytes and early embryos selectively express the survival factor BCL2L10. J Mol Med 87: 923–940.
[39]  Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ, et al. (2010) Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol 28: 1115–1121.
[40]  Motoyama N, Wang F, Roth KA, Sawa H, Nakayama K, et al. (1995) Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267: 1506–1510.
[41]  Kasai S, Chuma S, Motoyama N, Nakatsuji N (2003) Haploinsufficiency of Bcl-x leads to male-specific defects in fetal germ cells: differential regulation of germ cell apoptosis between the sexes. Dev Biol 264: 202–216.
[42]  Perumalsamy A, Fernandes R, Lai I, Detmar J, Varmuza S, et al. (2010) Developmental consequences of alternative Bcl-x splicing during preimplantation embryo development. FEBS J 277: 1219–1233.
[43]  Vander Heiden MG, Chandel NS, Schumacker PT, Thompson CB (1999) Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol Cell 3: 159–167.
[44]  Vander Heiden MG, Li XX, Gottleib E, Hill RB, Thompson CB, et al. (2001) Bcl-xL promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane. J Biol Chem 276: 19414–19419.
[45]  Autret A, Martin SJ (2009) Emerging role for members of the Bcl-2 family in mitochondrial morphogenesis. Mol Cell 36: 355–363.
[46]  Fleury C, Mignotte B, Vayssiere JL (2002) Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84: 131–141.
[47]  Kowaltowski AJ, Fenton RG, Fiskum G (2004) Bcl-2 family proteins regulate mitochondrial reactive oxygen production and protect against oxidative stress. Free Radic Biol Med 37: 1845–1853.
[48]  Haga S, Terui K, Fukai M, Oikawa Y, Irani K, et al. (2008) Preventing hypoxia/reoxygenation damage to hepatocytes by p66(shc) ablation: up-regulation of anti-oxidant and anti-apoptotic proteins. J Hepatol 48: 422–432.
[49]  Perez GI, Acton BM, Jurisicova A, Perkins GA, White A, et al. (2007) Genetic variance modifies apoptosis susceptibility in mature oocytes via alterations in DNA repair capacity and mitochondrial ultrastructure. Cell Death Differ 14: 524–533.
[50]  Chi MM, Hoehn A, Moley KH (2002) Metabolic changes in the glucose-induced apoptotic blastocyst suggest alterations in mitochondrial physiology. Am J Physiol Endocrinol Metab 283: E226–232.
[51]  Dumollard R, Ward Z, Carroll J, Duchen MR (2007) Regulation of redox metabolism in the mouse oocyte and embryo. Development 134: 455–465.
[52]  Interologous Interaction Database website. Available: http://ophid.utoronto.ca/i2d. Accessed 2011 June 21.
[53]  Brown KR, Jurisica I (2007) Unequal evolutionary conservation of human protein interactions in interologous networks. Genome Biol 8: R95.
[54]  NAViGaTOR website. Available: http://ophid.utoronto.ca/navigator. Accessed 2011 June 21.
[55]  Brown KR, Otasek D, Ali M, McGuffin MJ, Xie W, et al. (2009) NAViGaTOR: Network Analysis, Visualization and Graphing Toronto. Bioinformatics 25: 3327–3329.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133