全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Input-Dependent Wave Attenuation in a Critically-Balanced Model of Cortex

DOI: 10.1371/journal.pone.0041419

Full-Text   Cite this paper   Add to My Lib

Abstract:

A number of studies have suggested that many properties of brain activity can be understood in terms of critical systems. However it is still not known how the long-range susceptibilities characteristic of criticality arise in the living brain from its local connectivity structures. Here we prove that a dynamically critically-poised model of cortex acquires an infinitely-long ranged susceptibility in the absence of input. When an input is presented, the susceptibility attenuates exponentially as a function of distance, with an increasing spatial attenuation constant (i.e., decreasing range) the larger the input. This is in direct agreement with recent results that show that waves of local field potential activity evoked by single spikes in primary visual cortex of cat and macaque attenuate with a characteristic length that also increases with decreasing contrast of the visual stimulus. A susceptibility that changes spatial range with input strength can be thought to implement an input-dependent spatial integration: when the input is large, no additional evidence is needed in addition to the local input; when the input is weak, evidence needs to be integrated over a larger spatial domain to achieve a decision. Such input-strength-dependent strategies have been demonstrated in visual processing. Our results suggest that input-strength dependent spatial integration may be a natural feature of a critically-balanced cortical network.

References

[1]  Schwartz O, Simoncelli EP (2001) Natural signal statistics and sensory gain control, Nature Neuroscience 4, 819–825. doi:10.1038/90526.
[2]  Atick J, Redlich AN (1990) Towards a Theory of Early Visual Processing, Neural Computation 2.3 308–320. doi:10.1162/neco.1990.2.3.308.
[3]  Rieke F, Warland DA, de Ruyter van Steveninck R, Bialek W (1999) Spikes. Bradford, ISBN 0262681080.
[4]  Levitt JB, Lund JS (1997) Contrast dependence of contextual effects in primate visual cortex. Nature 387, 73–76.
[5]  Sceniak MP, Ringach DL, Hawken MJ, Shapley R (1999) Contrast’s effect on spatial summation by macaque V1 neurons. Nature Neuroscience 2, 733–739. doi:10.1038/11197.
[6]  Kapadia MK, Westheimer G, Gilbert CD (1999) Dynamics of spatial summation in primary visual cortex of alert monkeys. Proc. Natl. Acad. Sci. USA, 96.21, 12073–12078.
[7]  Nauhaus I, Busse L, Carandini M, Ringach DL (2009) Stimulus contrast modulates functional connectivity in visual cortex. Nat. Neurosci 12.1 70–76.
[8]  Magnasco MO, Piro O, Cecchi GA (2009) Self-tuned critical anti-Hebbian networks, Phys. Rev. Lett. 102 258102.
[9]  Mora T, Bialek W (2011) Are Biological Systems Poised at Criticality? J. Stat. Phys. 144.2 268–302.
[10]  da Silva L, Papa ARR, de Souza AMC (1998) Criticality in a simple model for brain functioning. Phys. Lett. A 242.6, 343–348.
[11]  Fraiman D, Balenzuela P, Foss J, Chialvo DR (2009) Ising-like dynamics in large-scale functional brain networks, Phys. Rev. E 79, 061922.
[12]  Schneidman E, Berry II MJ, Segev R, Bialek W (2006) Weak pairwise correlations imply strongly correlated network states Nature 440, 1007.
[13]  Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. J Neurosci 23: 11167–11177.
[14]  Levina A, Herrmann JM, Geisel T (2007) Dynamical synapses causing self-organized criticality in neural networks. Nature Physics 3, 857.
[15]  Gireesh ED, Plenz D (2008) Neuronal avalanches organize as nested theta- and beta/gamma-oscillations during development of cortical layer 2/3 (2008) Proc. Natl. Acad. Sci. USA 105, 7576–7581.
[16]  Eguíluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-Free Brain Functional Networks. Phys. Rev. Lett. 94, 018102.
[17]  Kitzbichler MG, Smith ML, Christensen SR, Bullmore E (2009) Broadband Criticality of Human Brain Network Synchronization. PLoS Comput Biol 5(3): e1000314. doi:10.1371/journal.pcbi.1000314.
[18]  Gold T (1948) Hearing. II. The Physical Basis of the Action of the Cochlea. Proc. R. Soc. Lond. B 135 no. 881 492–498.
[19]  Ashby WR (1948) Design for a Brain. Electronic Engineering 20: 379–83.
[20]  Choe Y, Magnasco MO, Hudspeth AJ (1998) A model for amplification of hair-bundle motion by cyclical binding of Ca2+ to mechanoelectrical-transduction channels, Proc. Natl. Acad. Sci. USA 95.26 15321–15326.
[21]  Camalet S, Duke T, Jlicher F, Prost J (2000) Auditory sensitivity provided by self-tuned critical oscillations of hair cells. Proc Natl Acad Sci USA 97: 3183–3188.
[22]  Eguiluz VM, Ospeck M, Choe Y, Hudspeth AJ, et al. (2000) Essential nonlinearities in hearing, Phys. Rev. Lett. 84.22 5232–5236.
[23]  Moreau L, Sontag E (2003) Balancing at the border of instability. Physical review 68: 020901.
[24]  Seung HS (1998) Continuous attractors and oculomotor control. Neural Networks 11, 1253–1258. (1998).
[25]  Seung HS, Lee DD, Reis BY, Tank DW (2000) Stability of the memory of eye position in a recurrent network of conductance-based model neurons. Neuron, 26, 259–271.
[26]  Machens CK, Romo R, Brody C (2005) Flexible Control of Mutual Inhibition: A Neural Model of Two-Interval Discrimination. Science 307, 1121–1124.
[27]  Bienenstock E, Lehmann D (1999) Regulated Criticality. Advances in Complex Systems 1.4 361–384.
[28]  Duke T, Jlicher F (2003) Active Traveling Wave in the Cochlea, Phys. Rev. Lett. 90, 158101.
[29]  Guckenheimer J, Holmes P (1997) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer Verlag ISBN 0387908196.
[30]  Pikulin VP, Pohozaev SI, Iacob A (2012) Equations in Mathematical Physics: A Practical Course. Springer Verlag ISBN 3034802676.
[31]  Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A (2003) Spontaneously emerging cortical representations of visual attributes. Nature 425, 954–956.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133