全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Endometrial Stromal Cells of Women with Recurrent Miscarriage Fail to Discriminate between High- and Low-Quality Human Embryos

DOI: 10.1371/journal.pone.0041424

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The aetiology of recurrent miscarriage (RM) remains largely unexplained. Women with RM have a shorter time to pregnancy interval than normally fertile women, which may be due to more frequent implantation of non-viable embryos. We hypothesized that human endometrial stromal cells (H-EnSCs) of women with RM discriminate less effectively between high-and low-quality human embryos and migrate more readily towards trophoblast spheroids than H-EnSCs of normally fertile women. Methodology/Principal Findings Monolayers of decidualized H-EnSCs were generated from endometrial biopsies of 6 women with RM and 6 fertile controls. Cell-free migration zones were created and the effect of the presence of a high-quality (day 5 blastocyst, n = 13), a low-quality (day 5 blastocyst with three pronuclei or underdeveloped embryo, n = 12) or AC-1M88 trophoblast cell line spheroid on H-ESC migratory activity was analyzed after 18 hours. In the absence of a spheroid or embryo, migration of H-EnSCs from fertile or RM women was similar. In the presence of a low-quality embryo in the zone, the migration of H-EnSCs of control women was inhibited compared to the basal migration in the absence of an embryo (P<0.05) and compared to the migration in the presence of high-quality embryo (p<0.01). Interestingly, the migratory response H-EnSCs of women with RM did not differ between high- and low-quality embryos. Furthermore, in the presence of a spheroid their migration was enhanced compared to the H-EnSCs of controls (p<0.001). Conclusions H-EnSCs of fertile women discriminate between high- and low-quality embryos whereas H-EnSCs of women with RM fail to do so. H-EnSCs of RM women have a higher migratory response to trophoblast spheroids. Future studies will focus on the mechanisms by which low-quality embryos inhibit the migration of H-EnSCs and how this is deregulated in women with RM.

References

[1]  Evers JL (2002) Female subfertility. Lancet 360: 151–159.
[2]  Macklon NS, Geraedts JP, Fauser BC (2002) Conception to ongoing pregnancy: the ‘black box’ of early pregnancy loss. Hum Reprod Update 8: 333–343.
[3]  Teklenburg G, Salker M, Molokhia M, Lavery S, Trew G, et al. (2010) Natural selection of human embryos: decidualizing endometrial stromal cells serve as sensors of embryo quality upon implantation. PLoS One 5: e10258.
[4]  Vanneste E, Voet T, Le CC, Ampe M, Konings P, et al. (2009) Chromosome instability is common in human cleavage-stage embryos. Nat Med 15: 577–583.
[5]  Rai R, Regan L (2006) Recurrent miscarriage. Lancet 368: 601–611.
[6]  Stirrat GM (1990) Recurrent miscarriage. Lancet 336: 673–675.
[7]  Aplin JD, Hey NA, Li TC (1996) MUC1 as a cell surface and secretory component of endometrial epithelium: reduced levels in recurrent miscarriage. Am J Reprod Immunol 35: 261–266.
[8]  Quenby S, Vince G, Farquharson R, Aplin J (2002) Recurrent miscarriage: a defect in nature’s quality control? Hum Reprod 17: 1959–1963.
[9]  Salker M, Teklenburg G, Molokhia M, Lavery S, Trew G, et al. (2010) Natural selection of human embryos: impaired decidualization of endometrium disables embryo-maternal interactions and causes recurrent pregnancy loss. PLoS One 5: e10287.
[10]  Teklenburg G, Salker M, Heijnen C, Macklon NS, Brosens JJ (2010) The molecular basis of recurrent pregnancy loss: impaired natural embryo selection. Mol Hum Reprod 16: 886–895.
[11]  Wilcox AJ, Baird DD, Weinberg CR (1999) Time of implantation of the conceptus and loss of pregnancy. N Engl J Med 340: 1796–1799.
[12]  Grewal S, Carver JG, Ridley AJ, Mardon HJ (2008) Implantation of the human embryo requires Rac1-dependent endometrial stromal cell migration. Proc Natl Acad Sci U S A 105: 16189–16194.
[13]  Grewal S, Carver J, Ridley AJ, Mardon HJ (2010) Human endometrial stromal cell rho GTPases have opposing roles in regulating focal adhesion turnover and embryo invasion in vitro. Biol Reprod 83: 75–82.
[14]  Gellersen B, Reimann K, Samalecos A, Aupers S, Bamberger AM (2010) Invasiveness of human endometrial stromal cells is promoted by decidualization and by trophoblast-derived signals. Hum Reprod 25: 862–873.
[15]  Gonzalez M, Neufeld J, Reimann K, Wittmann S, Samalecos A, et al. (2011) Expansion of human trophoblastic spheroids is promoted by decidualized endometrial stromal cells and enhanced by heparin-binding epidermal growth factor-like growth factor and interleukin-1 beta. Mol Hum Reprod 17: 421–433.
[16]  Bielanska M, Tan SL, Ao A (2002) Chromosomal mosaicism throughout human preimplantation development in vitro: incidence, type, and relevance to embryo outcome. Hum Reprod 17: 413–419.
[17]  Mansouri-Attia N, Sandra O, Aubert J, Degrelle S, Everts RE, et al. (2009) Endometrium as an early sensor of in vitro embryo manipulation technologies. Proc Natl Acad Sci U S A 106: 5687–5692.
[18]  Carp H, Toder V, Aviram A, Daniely M, Mashiach S, et al. (2001) Karyotype of the abortus in recurrent miscarriage. Fertil Steril 75: 678–682.
[19]  Lakovschek IC, Streubel B, Ulm B (2011) Natural outcome of trisomy 13, trisomy 18, and triploidy after prenatal diagnosis. Am J Med Genet A 155: 2626–2633.
[20]  Leese HJ, Sturmey RG, Baumann CG, McEvoy TG (2007) Embryo viability and metabolism: obeying the quiet rules. Hum Reprod 22: 3047–3050.
[21]  Leese HJ, Baumann CG, Brison DR, McEvoy TG, Sturmey RG (2008) Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod 14: 667–672.
[22]  Stokes PJ, Hawkhead JA, Fawthrop RK, Picton HM, Sharma V, et al. (2007) Metabolism of human embryos following cryopreservation: implications for the safety and selection of embryos for transfer in clinical IVF. Hum Reprod 22: 829–835.
[23]  Picton HM, Elder K, Houghton FD, Hawkhead JA, Rutherford AJ, et al. (2010) Association between amino acid turnover and chromosome aneuploidy during human preimplantation embryo development in vitro. Mol Hum Reprod 16: 557–569.
[24]  Redman CW, Sargent IL (2008) Circulating microparticles in normal pregnancy and pre-eclampsia. Placenta 29 Suppl A. pp. S73–S77.
[25]  Popovici RM, Betzler NK, Krause MS, Luo M, Jauckus J, et al. (2006) Gene expression profiling of human endometrial-trophoblast interaction in a coculture model. Endocrinology 147: 5662–5675.
[26]  Baart EB, Martini E, van den Berg I, Macklon NS, Galjaard RJ, et al. (2006) Preimplantation genetic screening reveals a high incidence of aneuploidy and mosaicism in embryos from young women undergoing IVF. Hum Reprod 21: 223–233.
[27]  Musters AM, Repping S, Korevaar JC, Mastenbroek S, Limpens J, et al. (2011) Pregnancy outcome after preimplantation genetic screening or natural conception in couples with unexplained recurrent miscarriage: a systematic review of the best available evidence. Fertil Steril 95: 2153–2157.
[28]  Gardner DK, Lane M, Stevens J, Schlenker T, Schoolcraft WB (2000) Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril 73: 1155–1158.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133