全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Whole-Body Cryostimulation - Potential Beneficial Treatment for Improving Antioxidant Capacity in Healthy Men - Significance of the Number of Sessions

DOI: 10.1371/journal.pone.0046352

Full-Text   Cite this paper   Add to My Lib

Abstract:

It is claimed that WBC (whole-body cryotherapy) enhances the resistance of the human body, also thanks to the beneficial effect on the antioxidant system. Accordingly, this research aimed to evaluate the effect of a series of whole-body cryostimulations on the level of non-enzymatic antioxidants and the activity of antioxidant enzymes in healthy men. The study was carried out on 30 young and healthy men aged 27.8±6.1 years with average body mass index and peak oxygen consumption (46.34±6.15 ml kg?1 ?min?1). The participants were daily exposed for 3 minutes to cryogenic temperatures (?130°C). Blood samples were obtained in the morning before cryostimulation, again 30 min after exposure and the following day in the morning, during the 1st, 10th and 20th session. Analysis concerned changes in plasma concentrations of total protein, albumin, glucose, uric acid and ceruloplasmin, and the most important components of the antioxidant system in red blood cells: superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, reduced and oxidized glutathione. To assess the oxidative stress level the 8-isoprostane concentration in plasma was measured. The obtained results indicate that cryogenic temperatures in repeated daily treatments result in changes in the peroxidant and antioxidant status. These changes seem to depend on the number of cryostimulations. After 20 daily treatments there was an increase in SOD, SOD:CAT ratio, a decrease in the concentration of reduced and oxidized glutathione and in the activity of GPx. It could be possible that differences in the activity of GSSG-R after 20 treatments depended on the body mass index of participants.

References

[1]  Nagashima K, Nakai S, Tanaka M, Kanosue K (2000) Neuronal circuitries involved in thermoregulation. Auton Neurosci 85: 18–25.
[2]  Jacobs I, Martineau L, Vallerand AL (1994) Thermoregulatory thermogenesis in human during cold stress. Exerc Sports Sci Rev 1994 22: 221–250.
[3]  Ganta GC, Helwig BG, Blecha F, Ganta RR, Cober R, et al. (2006) Hypothermia-enhanced splenic cytokine gene expression is independent of the sympathetic nervous system. Am J Physiol Regul Integr Comp Physiol 291: R558–565.
[4]  Stock JM, Taylor NA, Tipton MJ, Greenleaf JE (2004) Human physiological responses to cold exposure. Aviat Space Environ Med 75 (5) 444–457.
[5]  Swenson C, Sward L, Karlsson J (1996) Cryotherapy in sports medicine. Scand J Med Sci Sports 6: 193–200.
[6]  Dugue B, Leppanen E (2000) Adaptation related to cytokines in man. Effects of regular swimming in ice-cold water. Clin Physiol 20: 114–121.
[7]  Miller E, Mrowicka M, Malinowska K, Mrowicki J, Saluk-Juszczak J, et al. (2010) The effects of whole-body cryotherapy on oxidative stress in multiple sclerosis patients. J Therm Biol 35: 406–410.
[8]  Wo?niak A, Wo?niak B, Drewa G, Mila-Kierzenkowska C, Rakowski A, et al. (2007) The effect of whole-body cryostimulation on lysosomal enzyme activity in kayakers during training. Eur J Appl Physiol 101: 137–142.
[9]  Banfi G, Melegati G, Barassi A, Dogliotti G, d'Eril GM, et al. (2009) Effects of whole-body cryotherapy on serum mediators of inflammation and serum muscle enzymes in athletes. J Thermal Biol 34: 55–59.
[10]  Hausswirth C, Bieuzen F, Barbiche E, Brisswalter J (2010) Physiological responses after a cold-water immersion and a whole-body cryostimulation: Effects on recovery after a muscle exercise. Sci &Sports 25 (3) 121–131.
[11]  Lubkowska A, Chudecka M, Klimek A, Szygula Z, Fraczek B (2008) Acute effect of a single whole-body cryostimulation on prooxidant-antioxidant balance in blond of healthy, young men. J Therm Biol 33: 464–467.
[12]  Lubkowska A, Dolegowska B, Szygula Z, Klimek A (2009) The activity of selected enzymes in erythrocytes and the level of plasma antioxidants in response to single whole–body cryostimulation in humans. Scand J Lab Clin Invest 69 (3) 387–394.
[13]  Lubkowska A, Szygu?a Z, Klimek A, Tori M (2010) Do session of cryostimulation have influence on white blood cell count, level of IL6 and total oxidative and antioxidative status in healthy men? Eur J Appl Physiol 109 (1) 67–72.
[14]  Lubkowska A, Banfi G, Do??gowska B, d'Eril GM, ?uczak J, et al. (2010) Changes in lipid profile in response to three different protocols of whole-body cryostimulation treatments. Cryobiology 61: 22–26.
[15]  Lubkowska A, Szygu?a Z, Chlubek D, Banfi G (2011) Serum mediators of inflammation level: IL-1α, IL-1β, IL-6, IL-10, IL-12 and TNFα duringprolonged whole-body cryostimulation treatment with different amount of sessions in healthy men. Scand J Clin Lab Invest 71 (5) 419–25.
[16]  Miller E, Markiewicz L, Saluk J, Majsterek I (2012) Effect of short-term cryostimulation on antioxidative status and its clinical applications in humans. Eur J Appl Physiol 112 (5) 1645–1652.
[17]  Gopaul NK, Nourooz-Zadeh J, Mallet AI, Angg?rd EE (1994) Formation of PGF2-isoprostanes during the oxidative modification of low density lipoprotein. Biochem Biophys Res Commun 200: 338–43.
[18]  Nourooz-Zadeh J, Liu EH, Anggard E, Halliwell B (1998) F4-isoprostanes: a novel class of prostanoids formed during peroxidation of docosahexaenoic acid (DHA). Biochem Biophys Res Commun 242: 338–44.
[19]  Roberts LJ, Morrow JD (2006) Measurement of F2-isoprostanes as an index of oxidative stress in vivo. Free Radic Biol Med 28: 505–513.
[20]  Lubkowska A, Szygu?a Z (2010) Changes in Blood Pressure with compensatory heart rate decrease and level of aerobic capacity in response to repeated whole-body cryostimulation in normotensive, young and physically active men. IJOMEH 23 (4) 1–9.
[21]  Siems W, Brenke R, Sommerburg O, Grune T (1999) Improved antioxidative protection in winter swimmers. Q J Med 99: 193–198.
[22]  Clarkson PM, Thompson HS (2000) Antioxidants: what role do they play in physical activity and health? Am J Clin Nutr 72 suppl 637S–646S.
[23]  Kora? B, Buzad?i? B (2003) Antioxidative defense in rat skin after the adaptation to cold. J Thermal Biol 28: 245–249.
[24]  Flavahan NA (1991) The role of vascular Alpha-2 adrenoreceptors as cutaneus thermosensors. News Physiol Sci 6: 251–255.
[25]  Baily SR, Mitra S, Flavahan S, Flavahan NA (2005) Reactive oxygen species from smooth muscle mitochondria initiate cold-induced constriction of cutaneous arteries. Am J Physiol Heart Circ Physiol 289: H243–H250.
[26]  Thompson-Torgerson CS, Holowatz LA, Flavahan NA, Kenney WL (2007) Cold-induced cutaneous vasoconstriction is mediated by Rho kinase in vivo in human skin. Am J Physiol Heart Circ Physiol 292: H1700–H1705.
[27]  Teixeira CE, Webb RC (2004) Cold-Induced Vasoconstriction. Circulation Research 94: 1273–1275.
[28]  Siems W, Brenke R (1992) Changes in the glutathione system of erythrocytes due to enchanced formation of oxygen free radicals during short-thetrm whole-body cold stimulus. Arc Med Res 51: 3–9.
[29]  Siems W, Van Kuuk F, Maas R, Brenke R (1994) Uric acid and glutathione levels during short-therm whole-body cold exposure. Free Radical Biol Med 16: 299–305.
[30]  Dugue B, Leppanen E (2000) Adaptation related to cytokines in man. Effects of regular swimming in ice-cold water. Clin Physiol 20: 114–121.
[31]  Dugue B, Smolander J, Westerlund T, Oksa J, Nieminen R, et al. (2005) Acute and long-term effects of winter swimming and whole-body cryotherapy on plasma antioxidative capacity in healthy women. Scan J Clin Lab Invest 65: 395–402.
[32]  Edwards CJ, Fuller J (1996) Oxidative stress in erythrocytes. Comp. Haematol Int 6: 24–31.
[33]  ?uszczewski A, Matyska-Pielarska E, Trefler J, Wawer I, ??cki J, et al. (2007) Reactive oxygen species-physiological and pathological function in The human body. Reumatologia 45 (5) 284–289 (in Polish, Abstract in English).
[34]  Morrow JD, Awad JA, Boss HJ, Blair IA, Roberts LJ (1992) Non-cyclooxygenase-derived prostanoids (F2- isoprostanes) are formed in situ on phospholipids. Proc Natl Acad Sci USA 89: 10721–10725.
[35]  Montuschi P, Barnes P, Roberts LJ (2007) Insights into oxidative stress: the isoprostanes. Curr Med Chemistry 14: 703–711.
[36]  Belik J, Gema E, González-Luis A, Perez-Vizcaino F, Villamor E (2010) Isoprostanes in fetal and neonatal health and disease. Free Radic Biol Med 48: 177–188.
[37]  Kumar A, Kingdon E, Norman J (2005) The isoprostane 8-iso-PGF2α suppresses monocyte adhesion to human microvascular endothelial cells via two independent mechanisms. FASEB J 19: 443–445.
[38]  Milne GL, Yin H, Brooks JD, Sanchez S, Jackson RL, et al. (2007) Quantification of F2-isoprostanes in biological fluids and tissues as a measure of oxidant stress. Methods Enzymol 433: 113–126.
[39]  Comporti M, Signorini C, Arezzini B, Vecchio D, Monaco B, et al. (2008) F2-isoprostanes are not just markers of oxidative stress. Free Radic Biol Med 44: 248–250.
[40]  Andersen HR, Nielsen JB, Nielsen F, Grandjean P (1997) Antioxidative enzyme activities in human erythrocytes. Clinical Chemistry 43 (4) 562–568.
[41]  Ji LL (1999) Antioxidants and Oxidative Stress in Exercise. PSEBM 222: 283–292.
[42]  Becker BF (1993) Towards the physiological function of uric acid. Free Radic Biol Med 14: 615–631.
[43]  Squadrito GL, Cueto R, Splenser AE, Valavanidis A, Zhang H, et al. (2000) Reaction of uric acid with peroxynitrite and implications for the mechanism of neuroprotection by uric acid. Arch Biochem Biophys 376: 333–337.
[44]  Rizvi SI, Maurya PK (2007) Alterations in antioxidant enzymes during aging in humans. Mol Biotechnol 37: 58–61.
[45]  Suzuki T (2007) Nitrosation of uric acid induced by nitric oxide under aerobic conditions. Nitric Oxide 16: 266–273.
[46]  Ferrucci L, Harris TB, Guralnik JM, Tracy RP, Corti MC, et al. (1999) Serum IL-6 level and the development of disability in older persons. J Am Geriatr Soc 47: 639–646.
[47]  Djousse L, Kenneth JR, Cupples A, Arnett DK, Ellison RC (2003) Relation between serum albumin and carotid atherosclerosis. The NHLBI family heart study. Stroke 34: 53–57.
[48]  Lubkowska A, Do??gowska B, Czupryniak E, Marcinowska Z (2011) Effect of whole-body cryostimulation on the protein profile of healthy subjects. The 2nd Polish Congress of Biochemistry and Cell Biology. September 5th–9th, Krakow, Poland.
[49]  Kawakami A, Kubota K, Yamada N, Tagami U, Takehana K (2006) Identification and characterization of oxidized human serum albumin. A slight structural change impairs its ligand-binding and antioxidant functions. FEBS Journal 273: 3346–3357.
[50]  Prohaska JR (2008) Role of copper transporters in copper homeostasis. Am J Clin Nutr 88 suppl 826S–829S.
[51]  Giurgea N, Constantinescu MI, Sanciu R, Suciu S, Muresan A (2005) Ceruloplasmin-acute-phase reactant or endogenous antioxidant? The case of cardiovascular disease. Med Sci Monit 11: 48–51.
[52]  Bartosz G (2003) Another face of oxygen. Free radicals in nature. Warszawa PWN (in Polish, Abstract in English).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133