全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitors Aid in Functional Recovery of Sensory Pathways following Contusive Spinal Cord Injury

DOI: 10.1371/journal.pone.0047645

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Transplantations of human stem cell derivatives have been widely investigated in rodent models for the potential restoration of function of neural pathways after spinal cord injury (SCI). Studies have already demonstrated cells survival following transplantation in SCI. We sought to evaluate survival and potential therapeutic effects of transplanted human embryonic stem (hES) cell-derived oligodendrocyte progenitor cells (OPCs) in a contusive injury in rats. Bioluminescence imaging was utilized to verify survivability of cells up to 4 weeks, and somatosensory evoked potential (SSEPs) were recorded at the cortex to monitor function of sensory pathways throughout the 6-week recovery period. Principal Findings hES cells were transduced with the firefly luciferase gene and differentiated into OPCs. OPCs were transplanted into the lesion epicenter of rat spinal cords 2 hours after inducing a moderate contusive SCI. The hES-treatment group showed improved SSEPs, including increased amplitude and decreased latencies, compared to the control group. The bioluminescence of transplanted OPCs decreased by 97% in the injured spinal cord compared to only 80% when injected into an uninjured spinal cord. Bioluminescence increased in both experimental groups such that by week 3, no statistical difference was detected, signifying that the cells survived and proliferated independent of injury. Post-mortem histology of the spinal cords showed integration of human cells expressing mature oligodendrocyte markers and myelin basic protein without the expression of markers for astrocytes (GFAP) or pluripotent cells (OCT4). Conclusions hES-derived OPCs transplanted 2 hours after contusive SCI survive and differentiate into OLs that produce MBP. Treated rats demonstrated functional improvements in SSEP amplitudes and latencies compared to controls as early as 1 week post-injury. Finally, the hostile injury microenvironment at 2 hours post-injury initially caused increased cell death but did not affect the long-term cell proliferation or survival, indicating that cells can be transplanted sooner than conventionally accepted.

References

[1]  Sahni V, Kessler JA (2010) Stem cell therapies for spinal cord injury. Nature Reviews Neurology 6: 363–372.
[2]  Tsuji O, Miura K, Fujiyoshi K, Momoshima S, Nakamura M, et al. (2011) Cell Therapy for Spinal Cord Injury by Neural Stem/Progenitor Cells Derived from iPS/ES Cells. NeuroTherapeutics 8: 668–676.
[3]  Hwang D, Kim B, Kim E, Lee S, Joo I, et al. (2009) Transplantation of human neural stem cells transduced with Olig2 transcription factor improves locomotor recovery and enhances myelination in the white matter of rat spinal cord following contusive injury. BMC neuroscience 10: 117.
[4]  Ogawa D, Okada Y, Nakamura M, Kanemura Y, Okano HJ, et al. (2009) Evaluation of human fetal neural stem/progenitor cells as a source for cell replacement therapy for neurological disorders: Properties and tumorigenicity after long term in vitro maintenance. Journal of Neuroscience Research 87: 307–317.
[5]  Abematsu M, Tsujimura K, Yamano M, Saito M, Kohno K, et al. (2010) Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. The Journal of clinical investigation 120: 3255.
[6]  Kumagai G, Okada Y, Yamane J, Nagoshi N, Kitamura K, et al. (2009) Roles of ES cell-derived gliogenic neural stem/progenitor cells in functional recovery after spinal cord injury. PLoS One 4: e7706.
[7]  Rossi SL, Nistor G, Wyatt T, Yin HZ, Poole AJ, et al. (2010) Histological and functional benefit following transplantation of motor neuron progenitors to the injured rat spinal cord. PLoS One 5: e11852.
[8]  Geron (2010) Safety Study of GRNOPC1 in Spinal Cord Injury. In: NIH, editor. USA.
[9]  Letzen BS, Liu C, Thakor NV, Gearhart JD, All AH, et al. (2010) MicroRNA expression profiling of oligodendrocyte differentiation from human embryonic stem cells. PloS one 5: e10480.
[10]  Kerr CL, Letzen BS, Hill CM, Agrawal G, Thakor NV, et al. (2010) Efficient differentiation of human embryonic stem cells into oligodendrocyte progenitors for application in a rat contusion model of spinal cord injury. International Journal of Neuroscience 120: 305–313.
[11]  Erceg S, Ronaghi M, Oria M, García Roselló M, Aragó MAP, et al. (2010) Transplanted oligodendrocytes and motoneuron progenitors generated from human embryonic stem cells promote locomotor recovery after spinal cord transection. Stem Cells 28: 1541–1549.
[12]  Sharp J, Frame J, Siegenthaler M, Nistor G, Keirstead HS (2010) Human Embryonic Stem Cell Derived Oligodendrocyte Progenitor Cell Transplants Improve Recovery after Cervical Spinal Cord Injury. Stem Cells 28: 152–163.
[13]  Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, et al. (2005) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. The Journal of Neuroscience 25: 4694.
[14]  Faulkner J, Keirstead HS (2005) Human embryonic stem cell-derived oligodendrocyte progenitors for the treatment of spinal cord injury. Transplant Immunology 15: 131–142.
[15]  Okada S, Ishii K, Yamane J, Iwanami A, Ikegami T, et al. (2005) In vivo imaging of engrafted neural stem cells: its application in evaluating the optimal timing of transplantation for spinal cord injury. The FASEB journal 19: 1839.
[16]  Moloney TC, Dockery P, Windebank AJ, Barry FP, Howard L, et al. (2010) Survival and immunogenicity of mesenchymal stem cells from the green fluorescent protein transgenic rat in the adult rat brain. Neurorehabilitation and Neural Repair 24: 645.
[17]  Nori S, Okada Y, Yasuda A, Tsuji O, Takahashi Y, et al. (2011) Grafted human-induced pluripotent stem-cell–derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proceedings of the National Academy of Sciences 108: 16825–16830.
[18]  Curt A, Keck ME, Dietz V (1998) Functional outcome following spinal cord injury: significance of motor-evoked potentials and ASIA scores. Archives of physical medicine and rehabilitation 79: 81–86.
[19]  Dietz V, Wirz M, Colombo G, Curt A (1998) Locomotor capacity and recovery of spinal cord function in paraplegic patients: a clinical and electrophysiological evaluation. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control 109: 140–153.
[20]  Michelini E, Cevenini L, Mezzanotte L, Roda A (2009) Luminescent probes and visualization of bioluminescence. Methods in Molecular Biology 574: 1–13.
[21]  Sher F, van Dam G, Boddeke E, Copray S (2009) Bioluminescence Imaging of Olig2 Neural Stem Cells Reveals Improved Engraftment in a Demyelination Mouse Model. Stem Cells 27: 1582–1591.
[22]  Dothager RS, Flentie K, Moss B, Pan MH, Kesarwala A, et al. (2009) Advances in bioluminescence imaging of live animal models. Current opinion in biotechnology 20: 45–53.
[23]  Bottenstein JE, Sato GH (1979) Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proceedings of the National Academy of Sciences 76: 514.
[24]  Amit M, Margulets V, Segev H, Shariki K, Laevsky I, et al. (2003) Human feeder layers for human embryonic stem cells. Biology of reproduction 68: 2150–2156.
[25]  Hovatta O, Mikkola M, Gertow K, Str?mberg AM, Inzunza J, et al. (2003) A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Human Reproduction 18: 1404–1409.
[26]  Agrawal G, Iyer S, All AH (2009) A comparative study of recording procedures for motor evoked potential signals. 31st Annual International Conference of the IEEE EMBS. Minneapolis, Minnesota: IEEE. 2086–2089.
[27]  Agrawal G, Kerr C, Thakor NV, All AH (2010) Characterization of graded multicenter animal spinal cord injury study contusion spinal cord injury using somatosensory-evoked potentials. Spine 35: 1122.
[28]  Agrawal G, Sherman D, Maybhate A, Gorelik M, Kerr DA, et al. (2010) Slope analysis of somatosensory evoked potentials in spinal cord injury for detecting contusion injury and focal demyelination. Journal of Clinical Neuroscience 17: 1159–1164.
[29]  Agrawal G, Thakor NV, All AH (2009) Evoked potential versus behavior to detect minor insult to the spinal cord in a rat model. Journal of Clinical Neuroscience 16: 1052–1055.
[30]  All AH, Agrawal G, Walczak P, Maybhate A, Bulte JWM, et al. (2010) Evoked potential and behavioral outcomes for experimental autoimmune encephalomyelitis in Lewis rats. Neurological sciences 31: 595–601.
[31]  All AH, Walczak P, Agrawal G, Gorelik M, Lee C, et al. (2009) Effect of MOG sensitization on somatosensory evoked potential in Lewis rats. Journal of the neurological sciences 284: 81–89.
[32]  Bazley FA, All AH, Thakor NV, Kerr C, Maybhate A (2011) Plasticity Associated Changes in Cortical Somatosensory Evoked Potentials following Spinal Cord Injury in Rats. 33rd Annual International Conference of the IEEE EMBS. Boston, Massachusetts: IEEE. 2005–2008.
[33]  Bazley FA, Hu C, Maybhate A, Pourmorteza A, Pashai N, et al. (2012) Electrophysiologal evaluation of sensory and motor pathways after incomplete unilateral spinal cord contusion. Journal of Neurosurgery: Spine In press.
[34]  Maybhate A, Hu C, Bazley FA, Yu Q, Thakor NV, et al. (2011) Potential long-term benefits of acute hypothermia after spinal cord injury: Assessments with somatosensory-evoked potentials. Critical Care Medicine 39.
[35]  Walczak P, All AH, Rumpal N, Gorelik M, Kim H, et al. (2011) Human glial restricted progenitors survive, proliferate, and preserve electrophysiological function in rats with focal inflammatory spinal cord demyelination. Glia 59: 499–510.
[36]  Keirstead H, Nistor G, Bernal G, Totoiu M, Cloutier F, et al. (2005) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. Journal of Neuroscience 25: 4694.
[37]  Zeng X, Zeng Y, Ma Y, Lu L, Du B, et al. (2011) Bone Marrow Mesenchymal Stem Cells in a Three-Dimensional Gelatin Sponge Scaffold Attenuate Inflammation, Promote Angiogenesis, and Reduce Cavity Formation in Experimental Spinal Cord Injury. Cell Transplantation, 20 11: 1881–1899.
[38]  Takahashi Y, Tsuji O, Kumagai G, Hara CM, Okano HJ, et al. (2011) Comparative study of methods for administering neural stem/progenitor cells to treat spinal cord injury in mice. Cell transplantation 20: 727–739.
[39]  Einstein O, Grigoriadis N, Mizrachi-Kol R, Reinhartz E, Polyzoidou E, et al. (2006) Transplanted neural precursor cells reduce brain inflammation to attenuate chronic experimental autoimmune encephalomyelitis. Experimental neurology 198: 275–284.
[40]  Park S, Lee Y, Lee S, Lee D, Choi K, et al. (2012) Functional recovery after spinal cord injury in dogs treated with a combination of Matrigel and neural-induced adipose-derived mesenchymal Stem cells. Cytotherapy.
[41]  Arnhold S, Klein H, Semkova I, Addicks K, Schraermeyer U (2004) Neurally selected embryonic stem cells induce tumor formation after long-term survival following engraftment into the subretinal space. Investigative ophthalmology & visual science 45: 4251–4255.
[42]  Lü HZ, Wang YX, Zou J, Li Y, Fu SL, et al. (2010) Differentiation of neural precursor cell-derived oligodendrocyte progenitor cells following transplantation into normal and injured spinal cords. Differentiation 80: 228–240.
[43]  Wang Y, Cheng X, He Q, Zheng Y, Kim DH, et al. (2011) Astrocytes from the Contused Spinal Cord Inhibit Oligodendrocyte Differentiation of Adult Oligodendrocyte Precursor Cells by Increasing the Expression of Bone Morphogenetic Proteins. The Journal of Neuroscience 31: 6053.
[44]  Su Z, Yuan Y, Chen J, Zhu Y, Qiu Y, et al. (2011) Reactive astrocytes inhibit the survival and differentiation of oligodendrocyte precursor cells by secreted TNF-α. Journal of Neurotrauma 28: 1089–1100.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133