全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Effects of Silver Nanoparticle Exposure on Germination and Early Growth of Eleven Wetland Plants

DOI: 10.1371/journal.pone.0047674

Full-Text   Cite this paper   Add to My Lib

Abstract:

The increasing commercial production of engineered nanoparticles (ENPs) has led to concerns over the potential adverse impacts of these ENPs on biota in natural environments. Silver nanoparticles (AgNPs) are one of the most widely used ENPs and are expected to enter natural ecosystems. Here we examined the effects of AgNPs on germination and growth of eleven species of common wetland plants. We examined plant responses to AgNP exposure in simple pure culture experiments (direct exposure) and for seeds planted in homogenized field soils in a greenhouse experiment (soil exposure). We compared the effects of two AgNPs–20-nm polyvinylpyrrolidine-coated silver nanoparticles (PVP-AgNPs) and 6-nm gum arabic coated silver nanoparticles (GA-AgNPs)–to the effects of AgNO3 exposure added at equivalent Ag concentrations (1, 10 or 40 mg Ag L?1). In the direct exposure experiments, PVP-AgNP had no effect on germination while 40 mg Ag L?1 GA-AgNP exposure significantly reduced the germination rate of three species and enhanced the germination rate of one species. In contrast, 40 mg Ag L?1 AgNO3 enhanced the germination rate of five species. In general root growth was much more affected by Ag exposure than was leaf growth. The magnitude of inhibition was always greater for GA-AgNPs than for AgNO3 and PVP-AgNPs. In the soil exposure experiment, germination effects were less pronounced. The plant growth response differed by taxa with Lolium multiflorum growing more rapidly under both AgNO3 and GA-AgNP exposures and all other taxa having significantly reduced growth under GA-AgNP exposure. AgNO3 did not reduce the growth of any species while PVP-AgNPs significantly inhibited the growth of only one species. Our findings suggest important new avenues of research for understanding the fate and transport of NPs in natural media, the interactions between NPs and plants, and indirect and direct effects of NPs in mixed plant communities.

References

[1]  Bernhardt ES, Colman BP, Hochella MF, Cardinale BJ, Nisbet RM, et al. (2010) An ecological perspective on nanomaterial impacts in the environment. Journal of Environmental Quality 39: 1954–1965.
[2]  Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269: 105–119.
[3]  Neal AL (2008) What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17: 362–371.
[4]  Bradford A, Handy RD, Readman JW, Atfield A, Muhling M (2009) Impact of silver nanoparticle contamination on the genetic diversity of natural bacterial assemblages in estuarine sediments. Environmental Science & Technology 43: 4530–4536.
[5]  Colman BP, Wang SY, Auffan M, Wiesner MR, Bernhardt ES (2012) Antimicrobial effects of commercial silver nanoparticles are attenuated in natural streamwater and sediment. Ecotoxicology DOI: 10.1007/s10646-012-0920-5.
[6]  Blaser SA, Scheringer M, MacLeod M, Hungerbuhler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles. Science of the Total Environment 390: 396–409.
[7]  van der Zande M, Peters RJB, Peijnenburg AA, Bouwmeester H (2011) Biodistribution and toxicity of silver nanoparticles in rats after subchronic oral administration. Toxicology Letters 205: S289–S289.
[8]  Ma JW, Lu XY, Huang Y (2011) Genomic analysis of cytotoxicity response to nanosilver in human dermal fibroblasts. Journal of Biomedical Nanotechnology 7: 263–275.
[9]  Miao AJ, Schwehr KA, Xu C, Zhang SJ, Luo ZP, et al. (2009) The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environmental Pollution 157: 3034–3041.
[10]  Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, et al. (2008) Toxicity of Silver Nanoparticles to Chlamydomonas reinhardtii. Environmental Science & Technology 42: 8959–8964.
[11]  Asharani PV, Wu YL, Gong ZY, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19: 25.
[12]  Kim J, Kim S, Lee S (2011) Differentiation of the toxicities of silver nanoparticles and silver ions to the Japanese medaka (Oryzias latipes) and the cladoceran Daphnia magna. Nanotoxicology 5: 208–214.
[13]  Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science & Technology 43: 9473–9479.
[14]  Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Science of the Total Environment 407: 5243–5246.
[15]  Gubbins EJ, Batty LC, Lead JR (2011) Phytotoxicity of silver nanoparticles to Lemna minor L. Environmental Pollution. 159: 1551–1559.
[16]  Jiang H, Li M, Chang F, Li W, Yin L (2012) Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrrhiza. Environmental Toxicology and Chemistry 31: 1880–1996.
[17]  Yin LY, Cheng YW, Espinasse B, Colman BP, Auffan M, et al. (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environmental Science & Technology 45: 2360–2367.
[18]  Meyer JN, Lord CA, Yang XYY, Turner EA, Badireddy AR, et al. (2010) Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquatic Toxicology 100: 140–150.
[19]  Kim S, Choi JE, Choi J, Chung KH, Park K, et al. (2009) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicology in Vitro 23: 1076–1084.
[20]  Yang XY, Gondikas AP, Marinakos SM, Auffan M, Liu J, et al. (2012) Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environmental Science & Technology 46: 1119–1127.
[21]  Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12: 4271–4275.
[22]  Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, et al.. (2012) Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology DOI: 10.3109/17435390.2012.658094.
[23]  Choi O, Hu ZQ (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environmental Science & Technology 42: 4583–4588.
[24]  Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, et al. (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnology 3: 6.
[25]  El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, et al. (2011) Surface Charge-Dependent Toxicity of Silver Nanoparticles. Environmental Science & Technology 45: 283–287.
[26]  Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends in Plant Science 16: 582–589.
[27]  Carpita N, Sabularse D, Montezinos D, Delmer DP (1979) Determination of the pore size of cell walls of living plant cells. Science 205: 4.
[28]  Arnaout CL, Gunsch CK (2012) Impacts of silver nanoparticle coating on the nitrification potential of Nitrosomonas europaea. Environ Sci Technol 46: 5387–5395.
[29]  Ruffini Castiglione M, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62: 161–165.
[30]  Lin DH, Xing BS (2007) Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution 150: 243–250.
[31]  Wierzbicka M, Obidzinska J (1998) The effect of lead on seed imbibition and germination in different plant species. Plant Science 137: 155–171.
[32]  Sresty TVS, Rao KVM (1999) Ultrastructural alterations in response to zinc and nickel stress in the root cells of pigeonpea. Environmental and Experimental Botany 41: 3–13.
[33]  Calabrese EJ, Baldwin LA (2000) Chemical hormesis: its historical foundations as a biological hypothesis. Hum Exp Toxicol 19: 2–31.
[34]  Dinneny JR (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320: 942–945.
[35]  Bailey-Serres J, Voesenek LACJ (2010) Life in the balance: a signaling network controlling survival of flooding. Current Opinion in Plant Biology 13: 489–494.
[36]  Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environmental Science & Technology 42: 4133–4139.
[37]  Reinsch BC, Levard C, Li Z, Ma R, Wise A, et al. (2012) Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Environmental Science & Technology 46: 6992–7000.
[38]  Xiu ZM, Ma J, Alvarez PJJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environmental Science & Technology 45: 9003–9008.
[39]  Glover RD, Miller JM, Hutchison JE (2011) Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. Acs Nano 5: 8950–8957.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133