全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Structural Characterization of the Enzymes Composing the Arginine Deiminase Pathway in Mycoplasma penetrans

DOI: 10.1371/journal.pone.0047886

Full-Text   Cite this paper   Add to My Lib

Abstract:

The metabolism of arginine towards ATP synthesis has been considered a major source of energy for microorganisms such as Mycoplasma penetrans in anaerobic conditions. Additionally, this pathway has also been implicated in pathogenic and virulence mechanism of certain microorganisms, i.e. protection from acidic stress during infection. In this work we present the crystal structures of the three enzymes composing the gene cluster of the arginine deiminase pathway from M. penetrans: arginine deiminase (ADI), ornithine carbamoyltransferase (OTC) and carbamate kinase (CK). The arginine deiminase (ADI) structure has been refined to 2.3 ? resolution in its apo-form, displaying an “open” conformation of the active site of the enzyme in comparison to previous complex structures with substrate intermediates. The active site pocket of ADI is empty, with some of the catalytic and binding residues far from their active positions, suggesting major conformational changes upon substrate binding. Ornithine carbamoyltransferase (OTC) has been refined in two crystal forms at 2.5 ? and 2.6 ? resolution, respectively, both displaying an identical dodecameric structure with a 23-point symmetry. The dodecameric structure of OTC represents the highest level of organization in this protein family and in M.penetrans it is constituted by a novel interface between the four catalytic homotrimers. Carbamate kinase (CK) has been refined to 2.5 ? resolution and its structure is characterized by the presence of two ion sulfates in the active site, one in the carbamoyl phosphate binding site and the other in the β-phosphate ADP binding pocket of the enzyme. The CK structure also shows variations in some of the elements that regulate the catalytic activity of the enzyme. The relatively low number of metabolic pathways and the relevance in human pathogenesis of Mycoplasma penetrans places the arginine deiminase pathway enzymes as potential targets to design specific inhibitors against this human parasite.

References

[1]  Razin S (1978) The mycoplasmas. Microbiol Rev 42: 414–470.
[2]  Razin S, Yogev D, Naot Y (1998) Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev 62: 1094–156.
[3]  Pollack JD, Williams MV, McElhaney RN (1997) The comparative metabolism of the Mollicutes (Mycoplasmas): the utility for taxonomic classification and the relationship of putative gene annotation and phylogeny to enzymatic function in the smallest free-living cells. Critical Rev Microbiol 23: 269–354.
[4]  Cunin R, Glansdorff N, Piérard A, Stalon V (1986) Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 50: 314–52.
[5]  Ruepp A, Soppa J (1993) Fermentative arginine degradation in Halobacterium salinarium (formerly Halobacterium halobium): genes, gene products, and transcripts of the arcRACB gene cluster. Plant Physiol 101: 429–34.
[6]  Ludwig RA (1992) Arabidopsis chloroplasts dissimilate L-arginine and L-citrulline for use as N source. Mol Biochem Parasitol 51: 29–36.
[7]  Schofield PJ, Edwards MR, Matthews J, Wilson JR (1992) The pathway of arginine catabolism in Giardia intestinalis. Mol Biochem Parasitol 51: 29–36.
[8]  Yarlett N, Lindmark DG, Goldberg B, Moharrami MA, Bacchi CJ (1994) Subcellular localization of the enzymes of the arginine dihydrolase pathway in Trichomonas vaginalis and Tritrichomonas foetus. J Eukaryot Microbiol 41: 554–9.
[9]  Pollack JD (1997). Mycoplasma genes: a case for reflective annotation. Trends Microbiol. 5, 413–419.
[10]  Stalon V, Ramos F, Piérard A, Wiame JM (1967) The occurrence of a catabolic and an anabolic ornithine carbamoyltransferase in Pseudomonas. Biochim Biophys Acta 139: 91–7.
[11]  Vander Wauven C, Piérard A, Kley-Raymann M, Haas D (1984) Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: evidence for a four-gene cluster encoding the arginine deiminase pathway. J Bacteriol 160: 928–34.
[12]  Uriarte M, Marina A, Ramón-Maiques S, Fita I, Rubio V (1999) The carbamoyl-phosphate synthetase of Pyrococcus furiosus is enzymologically and structurally a carbamate kinase. J Biol Chem 274: 16295–303.
[13]  Knodler LA, Sekyere EO, Stewart TS, Schofield PJ, Edwards MR (1998) Cloning and expression of a prokaryotic enzyme, arginine deiminase, from a primitive eukaryote Giardia intestinalis. J Biol Chem 273: 4470–7.
[14]  Biagini GA, Yarlett N, Ball GE, Billetz AC, Lindmark DG, et al. (2003) Bacterial-like energy metabolism in the amitochondriate protozoon Hexamita inflata. Mol Biochem Parasitol 128: 11–9.
[15]  Baur H, Luethi E, Stalon V, Mercenier A, Haas D (1989) Sequence analysis and expression of the arginine-deiminase and carbamate-kinase genes of Pseudomonas aeruginosa. Eur J Biochem 179: 53–60.
[16]  Gamper M, Zimmermann A, Haas D (1991) Anaerobic regulation of transcription initiation in the arcDABC operon of Pseudomonas aeruginosa. J Bacteriol 173: 4742–50.
[17]  Lüthi E, Mercenier A, Haas D (1986) The arcABC operon required for fermentative growth of Pseudomonas aeruginosa on arginine: Tn5-751-assisted cloning and localization of structural genes. J Gen Microbiol 132: 2667–75.
[18]  Smith RS, Iglewski BH (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6: 56–60.
[19]  Dillon BJ, Holtsberg FW, Ensor CM, Bomalaski JS, Clark MA (2002) Biochemical characterization of the arginine degrading enzymes arginase and arginine deiminase and their effect on nitric oxide production. Med Sci Monit 8: BR248–53.
[20]  Miyazaki K, Takaku H, Umeda M, Fujita T, Huang WD, et al. (1990) Potent growth inhibition of human tumor cells in culture by arginine deiminase purified from a culture medium of a Mycoplasma-infected cell line. Cancer Res 50: 4522–7.
[21]  Philip R, Campbell E, Wheatley DN (2003) Arginine deprivation, growth inhibition and tumour cell death: 2. Enzymatic degradation of arginine in normal and malignant cell cultures. Br J Cancer 88: 613–23.
[22]  Terayama H, Koji T, Kontani M, Okumoto T (1982) Arginase as an inhibitory principle in liver plasma membranes arresting the growth of various mammalian cells in vitro. Biochim Biophys Acta 720: 188–92.
[23]  Galkin A, Kulakova L, Sarikaya E, Lim K, Howard A, et al. (2004) Structural insight into arginine degradation by arginine deiminase, an antibacterial and parasite drug target. J Biol Chem 279: 14001–8.
[24]  Galkin A, Lu X, Dunaway-Mariano D, Herzberg O (2005) Crystal structures representing the Michaelis complex and the thiouronium reaction intermediate of Pseudomonas aeruginosa arginine deiminase. J Biol Chem 280: 34080–7.
[25]  Das K, Butler GH, Kwiatkowski V, Clark AD Jr, Yadav P, et al. (2004) Crystal structures of arginine deiminase with covalent reaction intermediates; implications for catalytic mechanism. Structure 12: 657–67.
[26]  Falmagne P, Portetelle D, Stalon V (1985) Immunological and structural relatedness of catabolic ornithine carbamoyltransferases and the anabolic enzymes of enterobacteria. J. Bacteriol 161: 714–9.
[27]  Brady BS, Hyman BC, Lovatt CJ (2010) Regulation of CPSase, ACTase, and OCTase genes in Medicago truncatula: Implications for carbamoylphosphate synthesis and allocation to pyrimidine and arginine de novo biosynthesis. Gene 462: 18–25.
[28]  Díaz-Mu?oz M, Hernández-Mu?oz R (2010) Molecular and biochemical features of the mitochondrial enzyme ornithine transcarbamylase: a possible new role as a signaling factor. Curr Med Chem 17: 2253–60.
[29]  Houghton JE, Bencini DA, O'Donovan GA, Wild JR (1984) Protein differentiation: a comparison of aspartate transcarbamoylase and ornithine transcarbamoylase from Escherichia coli K-12. Proc Natl Acad Sci U S A 81: 4864–8.
[30]  Honzatko RB, Crawford JL, Monaco HL, Ladner JE, Ewards BF, et al. (1982) Crystal and molecular structures of native and CTP-liganded aspartate carbamoyltransferase from Escherichia coli. J Mol Biol 160: 219–63.
[31]  Villeret V, Tricot C, Stalon V, Dideberg O (1995) Crystal structure of Pseudomonas aeruginosa catabolic ornithine transcarbamoylase at 3.0-A resolution: a different oligomeric organization in the transcarbamoylase family. Proc Natl Acad Sci U S A 92: 10762–6.
[32]  Legrain C, Stalon V, Noullez JP, Mercenier A, Simon JP, et al. (1977) Structure and function of ornithine carbamoyltransferases. Eur J Biochem 80: 401–9.
[33]  de las Rivas B, Fox GC, Angulo I, Ripoll MM, Rodríguez H, et al. (2009) Crystal structure of the hexameric catabolic ornithine transcarbamylase from Lactobacillus hilgardii: Structural insights into the oligomeric assembly and metal binding. J Mol Biol 393: 425–34.
[34]  Villeret V, Clantin B, Tricot C, Legrain C, Roovers M, et al. (1998) The crystal structure of Pyrococcus furiosus ornithine carbamoyltransferase reveals a key role for oligomerization in enzyme stability at extremely high temperatures. Proc Natl Acad Sci U S A 95: 2801–6.
[35]  Baur H, Tricot C, Stalon V, Haas D (1990) Converting catabolic ornithine carbamoyltransferase to an anabolic enzyme. J Biol Chem 265: 14728–31.
[36]  Abdelal AT (1979) Arginine catabolism by microorganisms. Annu Rev Microbiol 33: 139–68.
[37]  Simon JP, Stalon V (1982) Enzymes of agmatine degradation and the control of their synthesis in Streptococcus faecalis. J Bacteriol 152: 676–81.
[38]  Griswold AR, Jameson-Lee M, Burne RA (2006) Regulation and physiologic significance of the agmatine deiminase system of Streptococcus mutans UA159. J Bacteriol 188: 834–41.
[39]  Vander Wauven C, Simon JP, Slos P, Stalon V (1986) Control of enzyme synthesis in the oxalurate catabolic pathway of Streptococcus faecalis ATCC 11700: evidence for the existence of a third carbamate kinase. Arch Microbiol 145: 386–90.
[40]  Cusa E, Obradors N, Baldomà L, Badía J, Aguilar J (1999) Genetic analysis of a chromosomal region containing genes required for assimilation of allantoin nitrogen and linked glyoxylate metabolism in Escherichia coli. J Bacteriol 181: 7479–84.
[41]  Linstead D, Cranshaw MA (1983) The pathway of arginine catabolism in the parasitic flagellate Trichomonas vaginalis. Mol Biochem Parasitol 8: 241–52.
[42]  Ramón-Maiques S, Marina A, Uriarte M, Fita I, Rubio V (2000) The 1.5 A resolution crystal structure of the carbamate kinase-like carbamoyl phosphate synthetase from the hyperthermophilic Archaeon Pyrococcus furiosus, bound to ADP, confirms that this thermostable enzyme is a carbamate kinase, and provides insight into substrate binding and stability in carbamate kinases. J Mol Biol 299: 463–76.
[43]  Ramón-Maiques S, Marina A, Guinot A, Gil-Ortiz F, Uriarte M, et al. (2010) Substrate binding and catalysis in carbamate kinase ascertained by crystallographic and site-directed mutagenesis studies: movements and significance of a unique globular subdomain of this key enzyme for fermentative ATP production in bacteria. J Mol Biol 397: 1261–75.
[44]  Marina A, Uriarte M, Barcelona B, Fresquet V, Cervera J, et al. (1998) Carbamate kinase from Enterococcus faecalis and Enterococcus faecium – cloning of the genes, studies on the enzyme expressed in Escherichia coli, and sequence similarity with N-acetyl-L-glutamate kinase. Eur J Biochem 253: 280–91.
[45]  Planell R (2008) PhD Thesis, Universitat Autònoma Barcelona.
[46]  Humm A, Fritsche E, Steinbacher S, Huber R (1997) Crystal structure and mechanism of human L-arginine: glycine amidinotransferase: a mitochondrial enzyme involved in creatine biosynthesis. EMBO J 16: 3373–85.
[47]  Murray-Rust J, Leiper J, McAlister M, Phelan J, Tilley S, et al. (2001) Structural insights into the hydrolysis of cellular nitric oxide synthase inhibitors by dimethylarginine dimethylaminohydrolase. Nat Struct Biol 8 679–83.
[48]  Llácer JL, Polo LM, Tavárez S, Alarcón B, Hilario R, et al. (2007) The gene cluster for agmatine catabolism of Enterococcus faecalis: study of recombinant putrescine transcarbamylase and agmatine deiminase and a snapshot of agmatine deiminase catalyzing its reaction. J Bacteriol 189: 1254–65.
[49]  Massant J, Wouters J, Glansdorff N (2003) Refined structure of Pyrococcus furiosus ornithine carbamoyltransferase at 1.87 A. Acta Crystallogr D Biol Crystallogr. 59: 2140–9.
[50]  Clantin B, Tricot C, Lonhienne T, Stalon V, Villeret V (2001) Probing the role of oligomerization in the high thermal stability of Pyrococcus furiosus ornithine carbamoyltransferase by site-specific mutants. Eur J Biochem 268: 3937–42.
[51]  Langley DB, Templeton MD, Fields BA, Mitchell RE, Collyer CA (2000) Mechanism of inactivation of ornithine transcarbamoylase by Ndelta -(N'-Sulfodiaminophosphinyl)-L-ornithine?,a true transition state analogue? Crystal structure and implications for catalytic mechanism. J Biol Chem 275: 20012–9.
[52]  Sankaranarayanan R, Cherney MM, Cherney LT, Garen CR, Moradian F, et al. (2008) The crystal structures of ornithine carbamoyltransferase from Mycobacterium tuberculosis and its ternary complex with carbamoyl phosphate and L-norvaline reveal the enzyme's catalytic mechanism. J Mol Biol 375: 1052–63.
[53]  Nguyen VT, Baker DP, Tricot C, Baur H, Villeret V, et al. (1996) Catabolic ornithine carbamoyltransferase of Pseudomonas aeruginosa. Importance of the N-terminal region for dodecameric structure and homotropic carbamoylphosphate cooperativity. Eur J Biochem 236: 283–93.
[54]  Mouz N, Tricot C, Ebel C, Petillot Y, Stalon V, et al. (1996) Use of a designed fusion protein dissociates allosteric properties from the dodecameric state of Pseudomonas aeruginosa catabolic ornithine carbamoyltransferase. Proc Natl Acad Sci U S A 93: 9414–9.
[55]  Massant J, Glansdorff N (2004) Metabolic channelling of carbamoyl phosphate in the hyperthermophilic archaeon Pyrococcus furiosus: dynamic enzyme-enzyme interactions involved in the formation of the channelling complex. Biochem Soc Trans 32: 306–9.
[56]  Galkin A, Kulakova L, Wu R, Nash TE, Dunaway-Mariano D, et al. (2010) X-ray structure and characterization of carbamate kinase fromthe human parasite Giardia lamblia. Acta Crystallogr Sect F Struct Biol Cryst Commun 66: 386–90.
[57]  Pich O, Burgos O, Planell R, Querol E, Pi?ol J (2006) Comparative analysis of antibiotic resistance gene markers in Mycoplasma genitalium: application to studies of the minimal gene complement. Microbiology 152: 519–527.
[58]  Kabsch W (2010) XDS. Acta Crystallogr D Biol Crystallogr 66, 125–132.
[59]  Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, et al. (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67: 235–242.
[60]  Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66: 486–501.
[61]  Brunger AT (2007) Version 1.2 of the Crystallography and NMR system. Nat Protoc 2: 2728–2733.
[62]  Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66: 213–221.
[63]  Schr?dinger LLC (2010) The PyMOL Molecular Graphics System, Version 1.3.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133