全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

A Brain-Computer Interface Based Attention Training Program for Treating Attention Deficit Hyperactivity Disorder

DOI: 10.1371/journal.pone.0046692

Full-Text   Cite this paper   Add to My Lib

Abstract:

Attention deficit hyperactivity disorder (ADHD) symptoms can be difficult to treat. We previously reported that a 20-session brain-computer interface (BCI) attention training programme improved ADHD symptoms. Here, we investigated a new more intensive BCI-based attention training game system on 20 unmedicated ADHD children (16 males, 4 females) with significant inattentive symptoms (combined and inattentive ADHD subtypes). This new system monitored attention through a head band with dry EEG sensors, which was used to drive a feed forward game. The system was calibrated for each user by measuring the EEG parameters during a Stroop task. Treatment consisted of an 8-week training comprising 24 sessions followed by 3 once-monthly booster training sessions. Following intervention, both parent-rated inattentive and hyperactive-impulsive symptoms on the ADHD Rating Scale showed significant improvement. At week 8, the mean improvement was ?4.6 (5.9) and ?4.7 (5.6) respectively for inattentive symptoms and hyperactive-impulsive symptoms (both p<0.01). Cohen’s d effect size for inattentive symptoms was large at 0.78 at week 8 and 0.84 at week 24 (post-boosters). Further analysis showed that the change in the EEG based BCI ADHD severity measure correlated with the change ADHD Rating Scale scores. The BCI-based attention training game system is a potential new treatment for ADHD. Trial Registration ClinicalTrials.gov NCT01344044

References

[1]  Biederman J, Petty CR, Evans M, Small J, Faraone SV (2010) How persistent is ADHD? A controlled 10-year follow-up study of boys with ADHD. Psychiatry Res 177: 299–304.
[2]  Mick E, Byrne D, Fried R, Monuteaux M, Faraone SV, et al. (2011) Predictors of ADHD persistence in girls at 5-year follow-up. J Atten Disord 15: 183–192.
[3]  Pliszka S (2007) Practice parameter for the assessment and treatment of children and adolescents with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 46: 894–921.
[4]  Sterman MB (1996) Physiological origins and functional correlates of EEG rhythmic activities: implications for self-regulation. Biofeedback Self Regul 21: 3–33.
[5]  Butnik SM (2005) Neurofeedback in adolescents and adults with attention deficit hyperactivity disorder. J Clin Psychol 61: 621–625.
[6]  Lofthouse N, Arnold LE, Hersch S, Hurt E, Debeus R (2011) A Review of Neurofeedback Treatment for Pediatric ADHD. J Atten Disord 16: 351–72.
[7]  Gevensleben H, Rothenberger A, Moll GH (2012) Heinrich (2012) H Neurofeedback in children with ADHD: validation and challenges. Expert Rev Neurother 12: 447–460.
[8]  Lim CG, Lee TS, Guan C, Sheng Fung DS, Cheung YB, et al. (2010) Effectiveness of a Brain-Computer Interface Based Programme for the Treatment of ADHD: A Pilot Study. Psychopharmacol Bull 43: 73–82.
[9]  MacLeod CM (1991) Half a century of research on the Stroop effect: an integrative review. Psychol Bull 109: 163–203.
[10]  Shaffer D, Fisher P, Lucas CP, Dulcan MK, Schwab-Stone ME (2000) NIMH Diagnostic Interview Schedule for Children Version IV (NIMH DISC-IV): description, differences from previous versions, and reliability of some common diagnoses. J Am Acad Child Adolesc Psychiatry 39: 28–38.
[11]  Kaufman AS, O’Neal MR, Avant AH, Long SW (1987) Introduction to the Kaufman Assessment Battery for Children (K-ABC) for pediatric neuroclinicians. J Child Neurol 2: 3–16.
[12]  Hamadicharef B, Zhang HH, Guan CT, Wang CC, Phua KS, et al.. (2009) Learning EEG-Based Spectral-Spatial Patterns for Attention Level Measurement. In proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Taiwan, May 24–27; 1465–1468.
[13]  Dupaul GJ (1991) Parent and teacher ratings of ADHD symptoms: Psychometric properties in a community-based sample. J Clin Child Psychol 20: 242–253.
[14]  Abibullaev B An J (2011) Decision Support Algorithm for Diagnosis of ADHD Using Electroencephalograms. J Med Syst 36: 2675–88.
[15]  Arns M, de Ridder S, Strehl U, Breteler M, Coenen A (2009) Efficacy of neurofeedback treatment in ADHD: the effects on inattention, impulsivity and hyperactivity: a meta-analysis. Clin EEG Neurosci 40: 180–189.
[16]  Logemann HN, Lansbergen MM, Van Os TW, Bocker KB, Kenemans JL (2010) The effectiveness of EEG-feedback on attention, impulsivity and EEG: a sham feedback controlled study. Neurosci Lett 479: 49–53.
[17]  Arns M, Gunkelman J, Breteler M, Spronk D (2008) EEG phenotypes predict treatment outcome to stimulants in children with ADHD. J Integr Neurosci 7: 421–438.
[18]  Tye C, McLoughlin G, Kuntsi J, Asherson P (2011) Electrophysiological markers of genetic risk for attention deficit hyperactivity disorder. Expert Rev Mol Med 13: e9.
[19]  Barry RJ, Clarke AR, Johnstone SJ (2003) A review of electrophysiology in attention-deficit/hyperactivity disorder: I. Qualitative and quantitative electroencephalography. Clin Neurophysiol 114: 171–183.
[20]  Snyder SM, Hall JR (2006) A meta-analysis of quantitative EEG power associated with attention-deficit hyperactivity disorder. J Clin Neurophysiol 23: 440–455.
[21]  Clarke AR, Barry RJ, McCarthy R, Selikowitz M (2001) Excess beta activity in children with attention-deficit/hyperactivity disorder: an atypical electrophysiological group. Psychiatry Res 103: 205–218.
[22]  Loo SK, Barkley RA (2005) Clinical utility of EEG in attention deficit hyperactivity disorder. Appl Neuropsychol 12: 64–76.
[23]  Swartwood JN, Swartwood MO, Lubar JF, Timmermann DL (2003) EEG differences in ADHD-combined type during baseline and cognitive tasks. Pediatr Neurol 28: 199–204.
[24]  El-Sayed E, Larsson JO, Persson HE, Rydelius PA (2002) Altered cortical activity in children with attention-deficit/hyperactivity disorder during attentional load task. J Am Acad Child Adolesc Psychiatry 41: 811–819.
[25]  Nazari MA, Wallois F, Aarabi A, Berquin P (2011) Dynamic changes in quantitative electroencephalogram during continuous performance test in children with attention-deficit/hyperactivity disorder. Int J Psychophysiol.
[26]  Clarke AR, Barry RJ, Dupuy FE, McCarthy R, Selikowitz M, et al. (2011) Childhood EEG as a predictor of adult attention-deficit/hyperactivity disorder. Clin Neurophysiol 122: 73–80.
[27]  Shalev L, Tsal Y, Mevorach C (2007) Computerized progressive attentional training (CPAT) program: effective direct intervention for children with ADHD. Child Neuropsychol 13: 382–388.
[28]  Steiner NJ, Sheldrick RC, Gotthelf D, Perrin EC (2011) Computer-based attention training in the schools for children with attention deficit/hyperactivity disorder: a preliminary trial. Clin Pediatr (Phila) 50: 615–622.
[29]  Gevensleben H, Holl B, Albrecht B, Schlamp D, Kratz O, et al. (2010) Neurofeedback training in children with ADHD: 6-month follow-up of a randomised controlled trial. Eur Child Adolesc Psychiatry 19: 715–724.
[30]  Bakhshayesh AR, Hansch S, Wyschkon A, Rezai MJ, Esser G (2011) Neurofeedback in ADHD: a single-blind randomized controlled trial. Eur Child Adolesc Psychiatry 20: 481–491.
[31]  Monastra VJ, Monastra DM, George S (2002) The effects of stimulant therapy, EEG biofeedback, and parenting style on the primary symptoms of attention-deficit/hyperactivity disorder. Appl Psychophysiol Biofeedback 27: 231–249.
[32]  Beauregard M, Levesque J (2006) Functional magnetic resonance imaging investigation of the effects of neurofeedback training on the neural bases of selective attention and response inhibition in children with attention-deficit/hyperactivity disorder. Appl Psychophysiol Biofeedback 31: 3–20.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133