Background & Aims Telaprevir, a hepatitis C virus NS3/4A protease inhibitor has significantly improved sustained viral response rates when given in combination with pegylated interferon alfa-2a and ribavirin, compared with current standard of care in hepatitis C virus genotype 1 infected patients. In patients with a failed sustained response, the emergence of drug-resistant variants during treatment has been reported. It is unclear to what extent these variants persist in untreated patients. The aim of this study was to assess using ultra-deep pyrosequencing, whether after 4 years follow-up, the frequency of resistant variants is increased compared to pre-treatment frequencies following 14 days of telaprevir treatment. Methods Fifteen patients from 2 previous telaprevir phase 1 clinical studies (VX04-950-101 and VX05-950-103) were included. These patients all received telaprevir monotherapy for 14 days, and 2 patients subsequently received standard of care. Variants at previously well-characterized NS3 protease positions V36, T54, R155 and A156 were assessed at baseline and after a follow-up of 4±1.2 years by ultra-deep pyrosequencing. The prevalence of resistant variants at follow-up was compared to baseline. Results Resistance associated mutations were detectable at low frequency at baseline. In general, prevalence of resistance mutations at follow-up was not increased compared to baseline. Only one patient had a small, but statistically significant, increase in the number of V36M and T54S variants 4 years after telaprevir-dosing. Conclusion In patients treated for 14 days with telaprevir monotherapy, ultra-deep pyrosequencing indicates that long-term persistence of resistant variants is rare.
References
[1]
World Health Organization (2011) Hepatitis C. Fact sheet No. 164. Revised June 2011. Available: http://www.who.int/mediacentre/factsheet?s/fs164/en/index.html. Accessed 2012 Jan 23.
[2]
Terrault NA, Berenguer M (2006) Treating hepatitis C infection in liver transplant recipients. Liver Transpl 12: 1192–1204 10.1002/lt.20865 [doi].
[3]
Foy E, Li K, Wang C, Sumpter R Jr, Ikeda M, et al. (2003) Regulation of interferon regulatory factor-3 by the hepatitis C virus serine protease. Science 3001145–1148 10.1126/science.1082604 [doi];1082604 [pii].
[4]
Foster GR (2004) Past, present, and future hepatitis C treatments. Semin Liver Dis 24 (Suppl.2): 97–104. 10.1055/s-2004–832934 [doi].
[5]
McHutchison JG, Bartenschlager R, Patel K, Pawlotsky JM (2006) The face of future hepatitis C antiviral drug development: recent biological and virologic advances and their translation to drug development and clinical practice. J Hepatol 44: 411–421. S0168–8278(05)00777-4 [pii];10.1016/j.jhep.2005.12.001 [doi].
[6]
Pawlotsky JM, McHutchison JG (2004) Hepatitis C. Development of new drugs and clinical trials: promises and pitfalls. Summary of an AASLD hepatitis single topic conference, Chicago, IL, February 27-March 1, 2003. Hepatology 39: 554–567. 10.1002/hep.20065 [doi].
[7]
Bacon BR, Gordon SC, Lawitz E, Marcellin P, Vierling JM, et al. (2011) Boceprevir for previously treated chronic HCV genotype 1 infection. N Engl J Med 364: 1207–1217. 10.1056/NEJMoa1009482 [doi].
[8]
Poordad F, McCone J Jr, Bacon BR, Bruno S, Manns MP, et al. (2011) Boceprevir for untreated chronic HCV genotype 1 infection. N Engl J Med 364: 1195–1206. 10.1056/NEJMoa1010494 [doi].
[9]
Forestier N, Reesink HW, Weegink CJ, McNair L, Kieffer TL, et al. (2007) Antiviral activity of telaprevir (VX-950) and peginterferon alfa-2a in patients with hepatitis C. Hepatology 46: 640–648. 10.1002/hep.21774 [doi].
[10]
Reesink HW, Zeuzem S, Weegink CJ, Forestier N, van VA, et al. (2006) Rapid decline of viral RNA in hepatitis C patients treated with VX-950: a phase Ib, placebo-controlled, randomized study. Gastroenterology 131: 997-1002. S0016-5085(06)01539-3 [pii];10.1053/j.gastro.2006.07.013 [doi].
[11]
Jacobson IM, McHutchison JG, Dusheiko G, Di Bisceglie AM, Reddy KR, et al. (2011) Telaprevir for previously untreated chronic hepatitis C virus infection. N Engl J Med 364: 2405–2416. 10.1056/NEJMoa1012912 [doi].
[12]
Zeuzem S, Andreone P, Pol S, Lawitz E, Diago M, et al. (2011) Telaprevir for retreatment of HCV infection. N Engl J Med 364: 2417–2428. 10.1056/NEJMoa1013086 [doi].
[13]
Bartenschlager R, Lohmann V (2000) Replication of hepatitis C virus. J Gen Virol 81: 1631–1648.
[14]
Lin C, Lin K, Luong YP, Rao BG, Wei YY, et al. (2004) In vitro resistance studies of hepatitis C virus serine protease inhibitors, VX-950 and BILN 2061: structural analysis indicates different resistance mechanisms. J Biol Chem 279: 17508–17514. 10.1074/jbc.M313020200 [doi];M313020200 [pii].
[15]
Kieffer TL, Sarrazin C, Miller JS, Welker MW, Forestier N, et al. (2007) Telaprevir and pegylated interferon-alpha-2a inhibit wild-type and resistant genotype 1 hepatitis C virus replication in patients. Hepatology 46: 631–639. 10.1002/hep.21781 [doi].
[16]
Sarrazin C, Zeuzem S (2010) Resistance to direct antiviral agents in patients with hepatitis C virus infection. Gastroenterology 138: 447–462. S0016-5085(09)02113-1 [pii];10.1053/j.gastro.2009.11.055 [doi].
[17]
Sarrazin C, Kieffer TL, Bartels D, Hanzelka B, Muh U, et al. (2007) Dynamic hepatitis C virus genotypic and phenotypic changes in patients treated with the protease inhibitor telaprevir. Gastroenterology 132: 1767–1777. S0016-5085(07)00394-0 [pii];10.1053/j.gastro.2007.02.037 [doi].
[18]
Murphy DG, Willems B, Deschenes M, Hilzenrat N, Mousseau R, et al. (2007) Use of sequence analysis of the NS5B region for routine genotyping of hepatitis C virus with reference to C/E1 and 5' untranslated region sequences. J Clin Microbiol 45: 1102-1112. JCM.02366-06 [pii];10.1128/JCM.02366-06 [doi].
[19]
Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, et al. (1990) Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28: 495–503.
[20]
Nei M, Kumar S (2000) Molecular Evolution and Phylogenetics.New York: Oxford University Press.
[21]
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731-2739. msr121 [pii];10.1093/molbev/msr121 [doi].
[22]
Li K, Venter E, Yooseph S, Stockwell TB, Eckerle LD, et al. (2010) ANDES: Statistical tools for the ANalyses of DEep Sequencing. BMC Res Notes 3: 199. 1756-0500-3-199 [pii];10.1186/1756-0500-3-199 [doi].
[23]
Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 22: 1185–1192. msi103 [pii];10.1093/molbev/msi103 [doi].
[24]
Drummond AJ, Ho SY, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4: e88. 05-PLBI-RA-0392R4 [pii];10.1371/journal.pbio.0040088 [doi].
[25]
Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7: 214. 1471–2148–7-214 [pii];10.1186/1471-2148-7-214 [doi].
[26]
Strimmer K, Pybus OG (2001) Exploring the demographic history of DNA sequences using the generalized skyline plot. Mol Biol Evol 18: 2298–2305.
[27]
Pybus OG, Rambaut A, Harvey PH (2000) An integrated framework for the inference of viral population history from reconstructed genealogies. Genetics 155: 1429–1437.
[28]
Bartels DJ, Zhou Y, Zhang EZ, Marcial M, Byrn RA, et al. (2008) Natural prevalence of hepatitis C virus variants with decreased sensitivity to NS3.4A protease inhibitors in treatment-naive subjects. J Infect Dis 198: 800–807. 10.1086/591141 [doi].
[29]
Kuntzen T, Timm J, Berical A, Lennon N, Berlin AM, et al. (2008) Naturally occurring dominant resistance mutations to hepatitis C virus protease and polymerase inhibitors in treatment-naive patients. Hepatology 48: 1769–1778. 10.1002/hep.22549 [doi].
[30]
Nasu A, Marusawa H, Ueda Y, Nishijima N, Takahashi K, et al. (2011) Genetic heterogeneity of hepatitis C virus in association with antiviral therapy determined by ultra-deep sequencing. PLoS One 6: e24907. 10.1371/journal.pone.0024907 [doi];PONE-D-11–11004 [pii].
[31]
Susser S, Vermehren J, Forestier N, Welker MW, Grigorian N, et al. (2011) Analysis of long-term persistence of resistance mutations within the hepatitis C virus NS3 protease after treatment with telaprevir or boceprevir. J Clin Virol. S1386–6532(11)00342-8 [pii];10.1016/j.jcv.2011.08.015 [doi].
[32]
Tsibris AM, Korber B, Arnaout R, Russ C, Lo CC, et al. (2009) Quantitative deep sequencing reveals dynamic HIV-1 escape and large population shifts during CCR5 antagonist therapy in vivo. PLoS One 4: e5683. 10.1371/journal.pone.0005683 [doi].
[33]
Lok AS, Gardiner DF, Lawitz E, Martorell C, Everson GT, et al. (2012) Preliminary study of two antiviral agents for hepatitis C genotype 1. N Engl J Med 366: 216–224. 10.1056/NEJMoa1104430 [doi].