Human visual area V6, in the parieto-occipital sulcus, is thought to have an important role in the extraction of optic flow for the monitoring and guidance of self-motion (egomotion) because it responds differentially to egomotion-compatible optic flow when compared to: (a) coherent but egomotion-incompatible flow (Cardin & Smith, 2010), and (b) incoherent motion (Pitzalis et al., 2010). It is not clear, however, whether V6 responds more strongly to egomotion-incompatible global motion than to incoherent motion. This is relevant not only for determining the functional properties of V6, but also in order to choose optimal stimuli for localising V6 accurately with fMRI. Localisation with retinotopic mapping is difficult and there is a need for a simple, reliable method. We conducted an event-related 3T fMRI experiment in which participants viewed a display of dots which either: a) followed a time-varying optic flow trajectory in a single, egomotion-compatible (EC) display; b) formed an egomotion-incompatible (EI) 3×3 array of optic flow patches; or c) moved randomly (RM). Results from V6 show an ordering of response magnitudes: EC > EI > RM. Neighbouring areas V3A and V7 responded more strongly to EC than to RM, but about equally to EC and EI. Our results suggest that although V6 may have a general role in the extraction of global motion, in clear contrast to neighbouring motion areas it is especially concerned with encoding EC stimuli. They suggest two strategies for localising V6: (1) contrasting EC and EI; or (2) contrasting EC and RM, which is more sensitive but carries a risk of including voxels from neighbouring regions that also show a EC > RM preference.
References
[1]
Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, et al. (2010) Human V6: the medial motion area. Cereb Cortex 20: 411–424.
[2]
Cardin V, Smith AT (2010) Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulations. Cereb Cortex 20: 1964–1973.
[3]
Cardin V, Smith AT (2011) Sensitivity of human visual cortical area V6 to stereoscopic depth gradients associated with self-motion. J Neurophysiol 106: 1240–1249.
[4]
Fischer E, Bülthoff H, Logothetis N, Bartels A (2012) Human areas V3A and V6 compensate for self-induced planar visual motion. Neuron 73: 1228–1240.
[5]
Galletti C, Fattori P (2003) Neuronal mechanisms for detection of motion in the field of view. Neuropsychologia 41: 1717–1727.
[6]
Galletti C, Fattori P, Gamberini M, Kutz DF (1999) The cortical visual area V6: brain location and visual topography. Eur J Neurosci 11: 3922–3936.
[7]
Pitzalis S, Galletti C, Huang R-S, Patria F, Committeri G, et al. (2006) Wide-Field Retinotopy Defines Human Cortical Visual Area V6. J Neurosci 26: 7962–7963.
[8]
Portin K, Hari R (1999) Human parieto-occipital visual cortex: lack of retinotopy and foveal magnification. Proc Biol Sci 266: 981–985.
[9]
Stenbacka L, Vanni S (2007) Central luminance flicker can activate peripheral retinotopic representation. NeuroImage 34: 342–348.
[10]
Wall M, Smith A (2008) The representation of egomotion in the human brain. Curr Biol 18: 191–194.
[11]
Morrone MC, Tosetti M, Montanaro D, Fiorentini A, Cioni G, et al. (2000) A cortical area that responds specifically to optic flow, revealed by fMRI. Nat Neurosci 3: 1322–1328.
[12]
Deichmann R, Schwarzbauer C, Turner R (2004) Optimisation of the 3D MDEFT sequence for anatomical brain imaging: technical implications at 1.5 and 3 T. NeuroImage. 21: 757–767.
[13]
Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH, et al. (1994) fMRI of human visual cortex. Nature 369: 525.
[14]
Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, et al. (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268: 889–893.
[15]
Galletti C, Fattori P, Battaglini PP, Shipp S, Zeki S (1996) Functional demarcation of a border between areas V6 and V6A in the superior parietal gyrus of the macaque monkey. Eur J Neurosci 8: 30–52.
[16]
Battaglini PP, Muzur A, Galletti C, Skrap M, Brovelli A, et al. (2002) Effects of lesions to area V6A in monkeys. Exp Brain Res 144: 419–422.
[17]
Galletti C, Kutz DF, Gamberini M, Breveglieri R, Fattori P (2003) Role of the medial parieto-occipital cortex in the control of reaching and grasping movements. Exp Brain Res 153: 158–170.
[18]
Galletti C, Fattori P, Kutz DF, Gamberini M (1999) Brain location and visual topography of cortical area V6A in the macaque monkey. Eur J Neurosci 11: 575–582.
[19]
Fattori P, Raos V, Breveglieri R, Bosco A, Marzocchi N, et al. (2010) The dorsomedial pathway is not just for reaching: grasping neurons in the medial parieto-occipital cortex of the macaque monkey. J Neurosci 30: 342–349.
[20]
Luppino G, Hamed SB, Gamberini M, Matelli M, Galletti C (2005) Occipital (V6) and parietal (V6A) areas in the anterior wall of the parieto-occipital sulcus of the macaque: a cytoarchitectonic study. Eur J Neurosci 21: 3056–3076.
[21]
Gallivan J, Cavina-Pratesi C, Culham J (2009) Is that withing reach? fMRI reveals that the human superior parieto-occipital cortex encodes objects reachable by the hand. J Neurosci 29 4381: 4391.
[22]
Monaco S, Cavina-Pratesi C, Sedda A, Fattori P, Galletti C (2011) Functional magnetic resonance adaptation reveals the involvement of the dorsomedial stream in hand orientation for grasping. J Neurophysiol 106 2248: 2263.