Domestic animals are unique in that they have been organised into managed populations called breeds. The strength of genetic divergence between breeds may vary dependent on the age of the breed, the scenario under which it emerged and the strength of reproductive isolation it has from other breeds. In this study, we investigated the Gulf Coast Native breed of sheep to determine if it contains lines of animals that are sufficiently divergent to be considered separate breeds. Allele sharing and principal component analysis (PCA) using nearly 50,000 SNP loci revealed a clear genetic division that corresponded with membership of either the Florida or Louisiana Native lines. Subsequent analysis aimed to determine if the strength of the divergence exceeded that found between recognised breed pairs. Genotypes from 14 breeds sampled from Europe and Asia were used to obtain estimates of pair-wise population divergence measured as FST. The divergence separating the Florida and Louisiana Native (FST = 6.2%) was approximately 50% higher than the average divergence separating breeds developed within the same region of Europe (FST = 4.2%). This strongly indicated that the two Gulf Coast Native lines are sufficiently different to be considered separate breeds. PCA using small SNP sets successfully distinguished between the Florida and Louisiana Native animals, suggesting that allele frequency differences have accumulated across the genome. This is consistent with a population history involving geographic separation and genetic drift. Suggestive evidence was detected for divergence at the poll locus on sheep chromosome 10; however drift at neutral markers has been the largest contributor to the genetic separation observed. These results document the emergence of populations that can be considered separate breeds, with practical consequences for bio-conservation priorities, animal registration and the establishment of separate breed societies.
References
[1]
Scherf BD (2000) World Watch List for Domestic Animals. Ed. 3. Food and Agriculture Organisation of the United Nations, Rome.
[2]
Menotti-Raymond M, David VA, Pflueger SM, Lindblad-Toh K, Wade CM, et al. (2007) Patterns of molecular genetic variation among cat breeds. Genomics 91: 1–11.
[3]
Lawson Handley LJ, Byrne K, Santucci F, Townsend S, Taylor M, et al. (2007) Genetic structure of European sheep breeds. Heredity 99: 620–631.
[4]
Tapio M, Ozerov M, Tapio I, Toro MA, Marzanov N, et al. (2010) Microsatellite-based genetic diversity and population structure of domestic sheep in northern Eurasia. BMC Genet 11: 76.
[5]
Kijas JW, Townley D, Dalrymple BP, Heaton MP, Maddox JF, et al. (2009) A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PLoS One 4: e4668.
[6]
Pereira F, Davis SJ, Pereira L, McEvoy B, Bradley DG, et al. (2006) Genetic signatures of a Mediterranean influence in Iberian Peninsula sheep husbandry. Mol Biol Evol (7) 1420–6.
[7]
Pedrosa S, Arranz JJ, Brito N, Molina A, San Primitivo F, et al. (2007) Mitochondrial diversity and the origin of Iberian sheep. Genet Sel Evol 39: 91–103.
[8]
Meadows JR, Li K, Kantanen J, Tapio M, Sipos W, et al. (2005) Mitochondrial sequence reveals high levels of gene flow between breeds of domestic sheep from Asia and Europe. J Hered 96: 494–501.
[9]
Dalvit C, De Marchi M, Zanetti E, Cassandro M (2009) Genetic variation and population structure of Italian native sheep breeds undergoing in situ conservation. J Anim Sci 87: 3837–44.
[10]
Paiva SR, Facó O, Faria DA, Lacerda T, Barretto GB, et al. (2011) Molecular and pedigree analysis applied to conservation of animal genetic resources: the case of Brazilian Somali hair sheep. Trop Anim Health Prod 43: 1449–1457.
[11]
Hayes B, Goddard M (2010) Genome-wide association and genomic selection in animal breeding. Genome 53: 876–883.
[12]
Yu K, Wang Z, Li Q, Wacholder S, Hunter DJ, et al. (2008) Population substructure and control selection in genome-wide association studies. PLoS One 3: e2551.
[13]
Solovieff N, Hartley SW, Baldwin CT, Perls TT, Steinberg MH, et al. (2010) Clustering by genetic ancestry using genome-wide SNP data. BMC Genet 11: 108.
[14]
Toro MA, Caballero A (2005) Characterization and conservation of genetic diversity in subdivided populations. Philos Trans R Soc Lond B Biol Sci 360): 1367–1378.
[15]
Kijas J, Lenstra J, Hayes B, Boitard S, Porto Neto L, et al. (2012) Genome-Wide Analysis of the World's Sheep Breeds Reveals High Levels of Historic Mixture and Strong Recent Selection. PLoS Biology 10: e1001258.
[16]
Bahirathan M, Miller JE, Barras SR, Kearney MT (1996) Susceptibility of Suffolk and Gulf Coast Native suckling lambs to naturally acquired strongylate nematode infections. Vet Parasitol 65: 259–268.
[17]
Miller JE, Bahirathan M, Lemarie SL, Hembry FG, Kearney MT, et al. (1998) Epidemiology of gastrointestinal nematode parasitism in Suffolk and Gulf Coast Native sheep with special emphasis on relative susceptibility to Haemonchus contortus infection. Vet Parasitol 74: 55–74.
[18]
Miller JE, Bishop SC, Cockett NE, McGraw RA (2006) Segregation of natural and experimental gastrointestinal nematode infection in F2 progeny of susceptible Suffolk and resistant Gulf Coast Native sheep and its usefulness in assessment of genetic variation. Vet Parasitology 140: 83–89.
[19]
Shakya KP, Miller JE, Lomax LG, Burnett DD (2011) Evaluation of immune response to artificial infections of Haemonchus contortus in Gulf Coast Native compared with Suffolk lambs. Vet Parasitology 181: 239–247.
[20]
Johnston SE, McEwan JC, Pickering NK, Kijas JW, Beraldi D, et al. (2011) Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population. Mol Ecol 20: 2555–2566.
[21]
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81: 559–575.
[22]
Szpiech ZA, Jakobsson M, Rosenberg NA (2008) ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24: 2498–2504.
[23]
Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet 2: e190.
[24]
Nicholson G, Smith AV, Jonsson F, Gustafsson O, Stefansson K (2002) Assessing population differentiation and isolation from single nucleotide polymorphism data. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64: 695–715.
[25]
Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263–265.