全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Establishment and Characterization of a Highly Tumourigenic and Cancer Stem Cell Enriched Pancreatic Cancer Cell Line as a Well Defined Model System

DOI: 10.1371/journal.pone.0048503

Full-Text   Cite this paper   Add to My Lib

Abstract:

Standard cancer cell lines do not model the intratumoural heterogeneity situation sufficiently. Clonal selection leads to a homogeneous population of cells by genetic drift. Heterogeneity of tumour cells, however, is particularly critical for therapeutically relevant studies, since it is a prerequisite for acquiring drug resistance and reoccurrence of tumours. Here, we report the isolation of a highly tumourigenic primary pancreatic cancer cell line, called JoPaca-1 and its detailed characterization at multiple levels. Implantation of as few as 100 JoPaca-1 cells into immunodeficient mice gave rise to tumours that were histologically very similar to the primary tumour. The high heterogeneity of JoPaca-1 was reflected by diverse cell morphology and a substantial number of chromosomal aberrations. Comparative whole-genome sequencing of JoPaca-1 and BxPC-3 revealed mutations in genes frequently altered in pancreatic cancer. Exceptionally high expression of cancer stem cell markers and a high clonogenic potential in vitro and in vivo was observed. All of these attributes make this cell line an extremely valuable model to study the biology of and pharmaceutical effects on pancreatic cancer.

References

[1]  Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62: 10–29.
[2]  Chari ST (2007) Detecting early pancreatic cancer: problems and prospects. Semin Oncol 34: 284–294.
[3]  Wang Z, Li Y, Ahmad A, Banerjee S, Azmi AS, et al. (2011) Pancreatic cancer: understanding and overcoming chemoresistance. Nat Rev Gastroenterol Hepatol 8: 27–33.
[4]  Kloppel G, Luttges J (2004) The pathology of ductal-type pancreatic carcinomas and pancreatic intraepithelial neoplasia: insights for clinicians. Curr Gastroenterol Rep 6: 111–118.
[5]  Marusyk A, Polyak K (2010) Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 1805: 105–117.
[6]  Kern SE, Shi C, Hruban RH (2011) The complexity of pancreatic ductal cancers and multidimensional strategies for therapeutic targeting. J Pathol 223: 295–306.
[7]  Ulrich AB, Schmied BM, Standop J, Schneider MB, Pour PM (2002) Pancreatic cell lines: a review. Pancreas 24: 111–120.
[8]  Hughes P, Marshall D, Reid Y, Parkes H, Gelber C (2007) The costs of using unauthenticated, over-passaged cell lines: how much more data do we need? Biotechniques 43: 575, 577–578, 581–572 passim.
[9]  Lee AJ, Swanton C (2011) Tumour heterogeneity and drug resistance: Personalising cancer medicine through functional genomics. Biochem Pharmacol 83: 1013–1020.
[10]  Simeone DM (2008) Pancreatic cancer stem cells: implications for the treatment of pancreatic cancer. Clin Cancer Res 14: 5646–5648.
[11]  Dick JE (2008) Stem cell concepts renew cancer research. Blood 112: 4793–4807.
[12]  Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8: 755–768.
[13]  Visvader JE (2011) Cells of origin in cancer. Nature 469: 314–322.
[14]  Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, et al. (2007) Identification of pancreatic cancer stem cells. Cancer Res 67: 1030–1037.
[15]  Lee HJ, You DD, Choi DW, Choi YS, Kim SJ, et al. (2011) Significance of CD133 as a cancer stem cell markers focusing on the tumorigenicity of pancreatic cancer cell lines. J Korean Surg Soc 81: 263–270.
[16]  Moriyama T, Ohuchida K, Mizumoto K, Cui L, Ikenaga N, et al. (2010) Enhanced cell migration and invasion of CD133+ pancreatic cancer cells cocultured with pancreatic stromal cells. Cancer 116: 3357–3368.
[17]  Immervoll H, Hoem D, Sakariassen PO, Steffensen OJ, Molven A (2008) Expression of the “stem cell marker” CD133 in pancreas and pancreatic ductal adenocarcinomas. BMC Cancer 8: 48.
[18]  Kim MP, Fleming JB, Wang H, Abbruzzese JL, Choi W, et al. (2011) ALDH activity selectively defines an enhanced tumor-initiating cell population relative to CD133 expression in human pancreatic adenocarcinoma. PLoS One 6: e20636.
[19]  Rasheed ZA, Yang J, Wang Q, Kowalski J, Freed I, et al. (2010) Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst 102: 340–351.
[20]  Kahlert C, Bergmann F, Beck J, Welsch T, Mogler C, et al. (2011) Low expression of aldehyde dehydrogenase 1A1 (ALDH1A1) is a prognostic marker for poor survival in pancreatic cancer. BMC Cancer 11: 275.
[21]  Gou S, Liu T, Wang C, Yin T, Li K, et al. (2007) Establishment of clonal colony-forming assay for propagation of pancreatic cancer cells with stem cell properties. Pancreas 34: 429–435.
[22]  Gaviraghi M, Tunici P, Valensin S, Rossi M, Giordano C, et al. (2011) Pancreatic cancer spheres are more than just aggregates of stem marker-positive cells. Biosci Rep 31: 45–55.
[23]  Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, et al. (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1: 313–323.
[24]  Du Z, Qin R, Wei C, Wang M, Shi C, et al. (2011) Pancreatic cancer cells resistant to chemoradiotherapy rich in “stem-cell-like” tumor cells. Dig Dis Sci 56: 741–750.
[25]  Hayashi T, Ding Q, Kuwahata T, Maeda K, Miyazaki Y, et al. (2012) Interferon-alpha (IFN-alpha) modulates the chemosensitivity of CD133-expressing pancreatic cancer cells to gemcitabine. Cancer Sci 103: 889–896.
[26]  Eisold S, Ryschich E, Linnebacher M, Giese T, Nauheimer D, et al. (2004) Characterization of FAMPAC, a newly identified human pancreatic carcinoma cell line with a hereditary background. Cancer 100: 1978–1986.
[27]  Ouyang H, Mou L, Luk C, Liu N, Karaskova J, et al. (2000) Immortal human pancreatic duct epithelial cell lines with near normal genotype and phenotype. Am J Pathol 157: 1623–1631.
[28]  Schmitt M, Pawlita M (2009) High-throughput detection and multiplex identification of cell contaminations. Nucleic Acids Res 37: e119.
[29]  Furukawa T, Duguid WP, Rosenberg L, Viallet J, Galloway DA, et al. (1996) Long-term culture and immortalization of epithelial cells from normal adult human pancreatic ducts transfected by the E6E7 gene of human papilloma virus 16. Am J Pathol 148: 1763–1770.
[30]  Czekanska EM (2011) Assessment of cell proliferation with resazurin-based fluorescent dye. Methods Mol Biol 740: 27–32.
[31]  Greulich-Bode MK, Gilbertz K, MacLeod RAF (2009) Tips and tricks for mFISH. In: Liehr T, editor. Fluorescence In Situ Hybridization (FISH) Application Guide. Berlin: Springer. pp. 183–192.
[32]  Hu Y, Smyth GK (2009) ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods 347: 70–78.
[33]  Bamford S, Dawson E, Forbes S, Clements J, Pettett R, et al. (2004) The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer 91: 355–358.
[34]  University JH (2012) Online Mendelian Inheritance in Man (OMIM).
[35]  Flicek P, Amode MR, Barrell D, Beal K, Brent S, et al. (2012) Ensembl 2012. Nucleic Acids Res 40: D84–90.
[36]  Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, et al. (2011) Integrative genomics viewer. Nat Biotechnol 29: 24–26.
[37]  Tamura K, Yokoyama S, Ieda J, Takifuji K, Hotta T, et al. (2011) Hollow spheroids beyond the invasive margin indicate the malignant potential of colorectal cancer. BMJ Open 1: e000179.
[38]  Kato N, Narutomi K, Fukase M, Motoyama T (2011) Hollow spheroids in ascites of ovarian clear cell carcinoma: how are they formed and how do they behave? Cytopathology 23: 120–125.
[39]  Lehnert L, Trost H, Schmiegel W, Roder C, Kalthoff H (1999) Hollow-spheres: a new model for analyses of differentiation of pancreatic duct epithelial cells. Ann N Y Acad Sci 880: 83–93.
[40]  Futreal PA, Coin L, Marshall M, Down T, Hubbard T, et al. (2004) A census of human cancer genes. Nat Rev Cancer 4: 177–183.
[41]  Innocenti F, Owzar K, Cox NL, Evans P, Kubo M, et al. (2012) A genome-wide association study of overall survival in pancreatic cancer patients treated with gemcitabine in CALGB 80303. Clin Cancer Res 18: 577–584.
[42]  Low SK, Kuchiba A, Zembutsu H, Saito A, Takahashi A, et al. (2010) Genome-wide association study of pancreatic cancer in Japanese population. PLoS One 5: e11824.
[43]  Petersen GM, Amundadottir L, Fuchs CS, Kraft P, Stolzenberg-Solomon RZ, et al. (2010) A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat Genet 42: 224–228.
[44]  Amundadottir L, Kraft P, Stolzenberg-Solomon RZ, Fuchs CS, Petersen GM, et al. (2009) Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat Genet 41: 986–990.
[45]  Diergaarde B, Brand R, Lamb J, Cheong SY, Stello K, et al. (2010) Pooling-based genome-wide association study implicates gamma-glutamyltransferase 1 (GGT1) gene in pancreatic carcinogenesis. Pancreatology 10: 194–200.
[46]  Rizzato C, Campa D, Giese N, Werner J, Rachakonda PS, et al. (2011) Pancreatic cancer susceptibility loci and their role in survival. PLoS One 6: e27921.
[47]  Deer EL, Gonzalez-Hernandez J, Coursen JD, Shea JE, Ngatia J, et al. (2010) Phenotype and genotype of pancreatic cancer cell lines. Pancreas 39: 425–435.
[48]  Alhamdani MS, Youns M, Buchholz M, Gress TM, Beckers MC, et al. (2012) Immunoassay-based proteome profiling of 24 pancreatic cancer cell lines. J Proteomics 75: 3747–3759.
[49]  Argani P, Iacobuzio-Donahue C, Ryu B, Rosty C, Goggins M, et al. (2001) Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clin Cancer Res 7: 3862–3868.
[50]  Iacobuzio-Donahue CA, Ashfaq R, Maitra A, Adsay NV, Shen-Ong GL, et al. (2003) Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer Res 63: 8614–8622.
[51]  Jhala N, Jhala D, Vickers SM, Eltoum I, Batra SK, et al. (2006) Biomarkers in Diagnosis of pancreatic carcinoma in fine-needle aspirates. Am J Clin Pathol 126: 572–579.
[52]  Jain R, Fischer S, Serra S, Chetty R (2010) The use of Cytokeratin 19 (CK19) immunohistochemistry in lesions of the pancreas, gastrointestinal tract, and liver. Appl Immunohistochem Mol Morphol 18: 9–15.
[53]  Hendrix MJ, Seftor EA, Chu YW, Trevor KT, Seftor RE (1996) Role of intermediate filaments in migration, invasion and metastasis. Cancer Metastasis Rev 15: 507–525.
[54]  Lee CJ, Dosch J, Simeone DM (2008) Pancreatic cancer stem cells. J Clin Oncol 26: 2806–2812.
[55]  Bhagwandin VJ, Shay JW (2009) Pancreatic cancer stem cells: fact or fiction? Biochim Biophys Acta 1792: 248–259.
[56]  Rasheed Z, Wang Q, Matsui W (2010) Isolation of stem cells from human pancreatic cancer xenografts. J Vis Exp 43 doi:10.3791/2169.
[57]  Hu G, Li F, Ouyang K, Xie F, Tang X, et al. (2012) Intrinsic gemcitabine resistance in a novel pancreatic cancer cell line is associated with cancer stem cell-like phenotype. Int J Oncol 40: 798–806.
[58]  Vizio B, Mauri FA, Prati A, Trivedi P, Giacobino A, et al. (2012) Comparative evaluation of cancer stem cell markers in normal pancreas and pancreatic ductal adenocarcinoma. Oncol Rep 27: 69–76.
[59]  Welsch T, Keleg S, Bergmann F, Degrate L, Bauer S, et al. (2009) Comparative analysis of tumorbiology and CD133 positivity in primary and recurrent pancreatic ductal adenocarcinoma. Clin Exp Metastasis 26: 701–711.
[60]  Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, et al. (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4: 437–450.
[61]  Guerra C, Schuhmacher AJ, Canamero M, Grippo PJ, Verdaguer L, et al. (2007) Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11: 291–302.
[62]  Soussi T, Lozano G (2005) p53 mutation heterogeneity in cancer. Biochem Biophys Res Commun 331: 834–842.
[63]  Bergamaschi D, Gasco M, Hiller L, Sullivan A, Syed N, et al. (2003) p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell 3: 387–402.
[64]  Watanabe Y, Castoro RJ, Kim HS, North B, Oikawa R, et al. (2011) Frequent alteration of MLL3 frameshift mutations in microsatellite deficient colorectal cancer. PLoS One 6: e23320.
[65]  Wang XX, Fu L, Li X, Wu X, Zhu Z, et al. (2011) Somatic mutations of the mixed-lineage leukemia 3 (MLL3) gene in primary breast cancers. Pathol Oncol Res 17: 429–433.
[66]  Lee J, Kim DH, Lee S, Yang QH, Lee DK, et al. (2009) A tumor suppressive coactivator complex of p53 containing ASC-2 and histone H3-lysine-4 methyltransferase MLL3 or its paralogue MLL4. Proc Natl Acad Sci U S A 106: 8513–8518.
[67]  Loeb LA (2011) Human cancers express mutator phenotypes: origin, consequences and targeting. Nat Rev Cancer 11: 450–457.
[68]  Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, et al. (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321: 1801–1806.
[69]  Wilson BG, Roberts CW (2011) SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer 11: 481–492.
[70]  Dixon RD, Arneman DK, Rachlin AS, Sundaresan NR, Costello MJ, et al. (2008) Palladin is an actin cross-linking protein that uses immunoglobulin-like domains to bind filamentous actin. J Biol Chem 283: 6222–6231.
[71]  Meng Y, Lu Z, Yu S, Zhang Q, Ma Y, et al. (2010) Ezrin promotes invasion and metastasis of pancreatic cancer cells. J Transl Med 8: 61.
[72]  Klein AP, Borges M, Griffith M, Brune K, Hong SM, et al. (2009) Absence of deleterious palladin mutations in patients with familial pancreatic cancer. Cancer Epidemiol Biomarkers Prev 18: 1328–1330.
[73]  Greer JB, Whitcomb DC (2007) Role of BRCA1 and BRCA2 mutations in pancreatic cancer. Gut 56: 601–605.
[74]  Law MH, Montgomery GW, Brown KM, Martin NG, Mann GJ, et al. (2012) Meta-analysis combining new and existing data sets confirms that the TERT-CLPTM1L locus influences melanoma risk. J Invest Dermatol 132: 485–487.
[75]  Beesley J, Pickett HA, Johnatty SE, Dunning AM, Chen X, et al. (2011) Functional polymorphisms in the TERT promoter are associated with risk of serous epithelial ovarian and breast cancers. PLoS One 6: e24987.
[76]  Pande M, Spitz MR, Wu X, Gorlov IP, Chen WV, et al. (2011) Novel genetic variants in the chromosome 5p15.33 region associate with lung cancer risk. Carcinogenesis 32: 1493–1499.
[77]  Chen XF, Cai S, Chen QG, Ni ZH, Tang JH, et al. (2012) Multiple variants of TERT and CLPTM1L constitute risk factors for lung adenocarcinoma. Genet Mol Res 11: 370–378.
[78]  Yamamoto K, Okamoto A, Isonishi S, Ochiai K, Ohtake Y (2001) A novel gene, CRR9, which was up-regulated in CDDP-resistant ovarian tumor cell line, was associated with apoptosis. Biochem Biophys Res Commun 280: 1148–1154.
[79]  Wang Z, Banerjee S, Kong D, Li Y, Sarkar FH (2007) Down-regulation of Forkhead Box M1 transcription factor leads to the inhibition of invasion and angiogenesis of pancreatic cancer cells. Cancer Res 67: 8293–8300.
[80]  Bao B, Wang Z, Ali S, Kong D, Banerjee S, et al. (2011) Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. J Cell Biochem 112: 2296–2306.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133