全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2009 

The Function of a Spindle Checkpoint Gene bub-1 in C. elegans Development

DOI: 10.1371/journal.pone.0005912

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The serine/threonine kinase BUB1 (Budding Uninhibited by Benzimidazole 1) was originally identified in yeast as a checkpoint protein, based on its mutant's incapacity of delaying the cell cycle in response to loss of microtubules. Our understanding of its function is primarily from studies carried out in yeast S. cerevisiae. It has been shown that it is a component of the mitotic spindle checkpoint and regulates the separation of sister chromatids through its downstream molecules. However, its roles in multi-cellular organisms remain unclear. Methods and Findings In nematode C. elegans, rapid cell divisions primarily occur in embryos and in germline of postembryonic larvae and adults. In addition, a select set of cells undergo a few rounds of cell division postembryonically. One common phenotype associated with impaired cell division is described as Stu (Sterile and Uncoordinated) [1], [2]. We conducted a genetic screen for zygotic mutants that displayed Stu phenotype in C. elegans. We isolated seven Stu mutants that fell into five complementation groups. We report here that two mutations, FanWang5 (fw5) and FanWang8 (fw8) affect the bub-1 gene, a homolog of yeast BUB1. Both mutant alleles of fw5 and fw8 exhibited variable behavioral defects, including developmental arrest, uncoordination and sterility. The number of postembryonically born neurons in the ventral cord decreased and their axon morphology was abnormal. Also, the decrease of neurons in the ventral cord phenotype could not be suppressed by a caspase-3 loss-of-function mutant. In addition, bub-1(fw5 and fw8) mutants showed widespread effects on postembryonic development in many cell lineages. We found that bub-1 functioned maternally in several developmental lineages at the embryonic stage in C. elegans. Studies in yeast have shown that BUB1 functions as a spindle checkpoint protein by regulating the anaphase promoting complex/cyclosome (APC/C). We performed double mutant analysis and observed that bub-1 genetically interacted with several downstream genes, including fzy-1/CDC20, mat-2/APC1 and emb-27/APC6. Conclusions Our results demonstrate a conserved role of bub-1 in cell-cycle regulation and reveal that C. elegans bub-1 is required both maternally and zygotically. Further, our genetic analysis is consistent with that the function of bub-1 in C. elegans is likely similar to its yeast and mammalian homologs.

References

[1]  Horvitz HR, Sulston JE (1980) Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics 96: 435–454.
[2]  Sulston JE, Horvitz HR (1981) Abnormal cell lineages in mutants of the nematode Caenorhabditis elegans. Dev Biol 82: 41–55.
[3]  Kitagawa R, Rose AM (1999) Components of the spindle-assembly checkpoint are essential in Caenorhabditis elegans. Nat Cell Biol 1: 514–521.
[4]  Chen RH (2004) Phosphorylation and activation of Bub1 on unattached chromosomes facilitate the spindle checkpoint. EMBO J 23: 3113–3121.
[5]  Li X, Nicklas RB (1995) Mitotic forces control a cell-cycle checkpoint. Nature 373: 630–632.
[6]  Rieder CL, Cole RW, Khodjakov A, Sluder G (1995) The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J Cell Biol 130: 941–948.
[7]  Jin DY, Spencer F, Jeang KT (1998) Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell 93: 81–91.
[8]  Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, et al. (1998) Mutations of mitotic checkpoint genes in human cancers. Nature 392: 300–303.
[9]  Sharp-Baker H, Chen RH (2001) Spindle checkpoint protein Bub1 is required for kinetochore localization of Mad1, Mad2, Bub3, and CENP-E, independently of its kinase activity. J Cell Biol 153: 1239–1250.
[10]  Lengauer C, Wang Z (2004) From spindle checkpoint to cancer. Nat Genet 36: 1144–1145.
[11]  Baker DJ, Chen J, van Deursen JM (2005) The mitotic checkpoint in cancer and aging: what have mice taught us? Curr Opin Cell Biol 17: 583–589.
[12]  Li R, Murray AW (1991) Feedback control of mitosis in budding yeast. Cell 66: 519–531.
[13]  Hong FD, Chen J, Donovan S, Schneider N, Nisen PD (1999) Taxol, vincristine or nocodazole induces lethality in G1-checkpoint-defective human astrocytoma U373MG cells by triggering hyperploid progression. Carcinogenesis 20: 1161–1168.
[14]  Weiss E, Winey M (1996) The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint. J Cell Biol 132: 111–123.
[15]  Zachariae W, Nasmyth K (1999) Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev 13: 2039–2058.
[16]  Yu H, Tang Z (2005) Bub1 multitasking in mitosis. Cell Cycle 4: 262–265.
[17]  Sudakin V, Chan GK, Yen TJ (2001) Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol 154: 925–936.
[18]  Yu H (2002) Regulation of APC-Cdc20 by the spindle checkpoint. Curr Opin Cell Biol 14: 706–714.
[19]  Tang Z, Shu H, Oncel D, Chen S, Yu H (2004) Phosphorylation of Cdc20 by Bub1 provides a catalytic mechanism for APC/C inhibition by the spindle checkpoint. Mol Cell 16: 387–397.
[20]  Kitagawa R, Law E, Tang L, Rose AM (2002) The Cdc20 homolog, FZY-1, and its interacting protein, IFY-1, are required for proper chromosome segregation in Caenorhabditis elegans. Curr Biol 12: 2118–2123.
[21]  Hajeri VA, Stewart AM, Moore LL, Padilla PA (2008) Genetic analysis of the spindle checkpoint genes san-1, mdf-2, bub-3 and the CENP-F homologues hcp-1 and hcp-2 in Caenorhabditis elegans. Cell Div 3: 6.
[22]  Oegema K, Desai A, Rybina S, Kirkham M, Hyman AA (2001) Functional analysis of kinetochore assembly in Caenorhabditis elegans. J Cell Biol 153: 1209–1226.
[23]  Encalada SE, Willis J, Lyczak R, Bowerman B (2005) A spindle checkpoint functions during mitosis in the early Caenorhabditis elegans embryo. Mol Biol Cell 16: 1056–1070.
[24]  Stein KK, Davis ES, Hays T, Golden A (2007) Components of the spindle assembly checkpoint regulate the anaphase-promoting complex during meiosis in Caenorhabditis elegans. Genetics 175: 107–123.
[25]  O'Connell KF, Leys CM, White JG (1998) A genetic screen for temperature-sensitive cell-division mutants of Caenorhabditis elegans. Genetics 149: 1303–1321.
[26]  Woollard A, Hodgkin J (1999) Stu-7/air-2 is a C. elegans aurora homologue essential for chromosome segregation during embryonic and post-embryonic development. Mech Dev 82: 95–108.
[27]  Furuta T, Baillie DL, Schumacher JM (2002) Caenorhabditis elegans Aurora A kinase AIR-1 is required for postembryonic cell divisions and germline development. Genesis 34: 244–250.
[28]  Eastman C, Horvitz HR, Jin Y (1999) Coordinated transcriptional regulation of the unc-25 glutamic acid decarboxylase and the unc-47 GABA vesicular transporter by the Caenorhabditis elegans UNC-30 homeodomain protein. J Neurosci 19: 6225–6234.
[29]  Wang X, Suh C, Zhu Z, Fan Q (2007) Minichromosome maintenance protein 5 homologue in Caenorhabditis elegans plays essential role for postembryonic development. Biochem Biophys Res Commun 359: 965–971.
[30]  White JG, Southgate E, Thomson JN, Brenner S (1976) The structure of the ventral nerve cord of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 275: 327–348.
[31]  Altun-Gultekin Z, Andachi Y, Tsalik EL, Pilgrim D, Kohara Y, et al. (2001) A regulatory cascade of three homeobox genes, ceh-10, ttx-3 and ceh-23, controls cell fate specification of a defined interneuron class in C. elegans. Development 128: 1951–1969.
[32]  Wicks SR, Yeh RT, Gish WR, Waterston RH, Plasterk RH (2001) Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat Genet 28: 160–164.
[33]  Hallam S, Singer E, Waring D, Jin Y (2000) The C. elegans NeuroD homolog cnd-1 functions in multiple aspects of motor neuron fate specification. Development 127: 4239–4252.
[34]  Basu J, Bousbaa H, Logarinho E, Li Z, Williams BC, et al. (1999) Mutations in the essential spindle checkpoint gene bub1 cause chromosome missegregation and fail to block apoptosis in Drosophila. J Cell Biol 146: 13–28.
[35]  Niikura Y, Dixit A, Scott R, Perkins G, Kitagawa K (2007) BUB1 mediation of caspase-independent mitotic death determines cell fate. J Cell Biol 178: 283–296.
[36]  Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75: 641–652.
[37]  Kennedy S, Wang D, Ruvkun G (2004) A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature 427: 645–649.
[38]  Altun ZF, Hall DH (2005) Handbook of C. elegans Anatomy. In WormAtlas .
[39]  Hedgecock EM, White JG (1985) Polyploid tissues in the nematode Caenorhabditis elegans. Dev Biol 107: 128–133.
[40]  Pellis-van Berkel W, Verheijen MH, Cuppen E, Asahina M, de Rooij J, et al. (2005) Requirement of the Caenorhabditis elegans RapGEF pxf-1 and rap-1 for epithelial integrity. Mol Biol Cell 16: 106–116.
[41]  Ambros V, Horvitz HR (1984) Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226: 409–416.
[42]  Kostic I, Li S, Roy R (2003) cki-1 links cell division and cell fate acquisition in the C. elegans somatic gonad. Dev Biol 263: 242–252.
[43]  Furuta T, Tuck S, Kirchner J, Koch B, Auty R, et al. (2000) EMB-30: an APC4 homologue required for metaphase-to-anaphase transitions during meiosis and mitosis in Caenorhabditis elegans. Mol Biol Cell 11: 1401–1419.
[44]  Tarailo M, Kitagawa R, Rose AM (2007) Suppressors of spindle checkpoint defect (such) mutants identify new mdf-1/MAD1 interactors in Caenorhabditis elegans. Genetics 175: 1665–1679.
[45]  Kramer ER, Scheuringer N, Podtelejnikov AV, Mann M, Peters JM (2000) Mitotic regulation of the APC activator proteins CDC20 and CDH1. Mol Biol Cell 11: 1555–1569.
[46]  Brodigan TM, Liu J, Park M, Kipreos ET, Krause M (2003) Cyclin E expression during development in Caenorhabditis elegans. Dev Biol 254: 102–115.
[47]  Fay DS, Han M (2000) Mutations in cye-1, a Caenorhabditis elegans cyclin E homolog, reveal coordination between cell-cycle control and vulval development. Development 127: 4049–4060.
[48]  Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94.
[49]  McIntire SL, Reimer RJ, Schuske K, Edwards RH, Jorgensen EM (1997) Identification and characterization of the vesicular GABA transporter. Nature 389: 870–876.
[50]  Kostic I, Roy R (2002) Organ-specific cell division abnormalities caused by mutation in a general cell cycle regulator in C. elegans. Development 129: 2155–2165.
[51]  Pilon M, Peng XR, Spence AM, Plasterk RH, Dosch HM (2000) The diabetes autoantigen ICA69 and its Caenorhabditis elegans homologue, ric-19, are conserved regulators of neuroendocrine secretion. Mol Biol Cell 11: 3277–3288.
[52]  Sulston J, Hodgkin J (1988) Methods. In: Wood WB, editor. The Nematode Caenorhabditis elegans. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press. pp. 587–606.
[53]  Hobert O (2002) PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C. elegans. Biotechniques 32: 728–730.
[54]  Maduro M, Pilgrim D (1995) Identification and cloning of unc-119, a gene expressed in the Caenorhabditis elegans nervous system. Genetics 141: 977–988.
[55]  Miller DM, Shakes DC (1995) Immunofluorescence microscopy. Methods Cell Biol 48: 365–394.
[56]  Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, et al. (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408: 325–330.
[57]  Boxem M, Srinivasan DG, van den Heuvel S (1999) The Caenorhabditis elegans gene ncc-1 encodes a cdc2-related kinase required for M phase in meiotic and mitotic cell divisions, but not for S phase. Development 126: 2227–2239.
[58]  Lozano E, Saez AG, Flemming AJ, Cunha A, Leroi AM (2006) Regulation of growth by ploidy in Caenorhabditis elegans. Curr Biol 16: 493–498.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133