全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2009 

Modulation of Gene Expression by Human Cytosolic tRNase ZL through 5′-Half-tRNA

DOI: 10.1371/journal.pone.0005908

Full-Text   Cite this paper   Add to My Lib

Abstract:

A long form (tRNase ZL) of tRNA 3′ processing endoribonuclease (tRNase Z, or 3′ tRNase) can cleave any target RNA at any desired site under the direction of artificial small guide RNA (sgRNA) that mimics a 5′-half portion of tRNA. Based on this enzymatic property, a gene silencing technology has been developed, in which a specific mRNA level can be downregulated by introducing into cells a synthetic 5′-half-tRNA that is designed to form a pre-tRNA-like complex with a part of the mRNA. Recently 5′-half-tRNA fragments have been reported to exist stably in various types of cells, although little is know about their physiological roles. We were curious to know if endogenous 5′-half-tRNA works as sgRNA for tRNase ZL in the cells. Here we show that human cytosolic tRNase ZL modulates gene expression through 5′-half-tRNA. We found that 5′-half-tRNAGlu, which co-immunoprecipitates with tRNase ZL, exists predominantly in the cytoplasm, functions as sgRNA in vitro, and downregulates the level of a luciferase mRNA containing its target sequence in human kidney 293 cells. We also demonstrated that the PPM1F mRNA is one of the genuine targets of tRNase ZL guided by 5′-half-tRNAGlu. Furthermore, the DNA microarray data suggested that tRNase ZL is likely to be involved in the p53 signaling pathway and apoptosis.

References

[1]  Nashimoto M (1992) Characterization of the spermidine-dependent, sequence-specific endoribonuclease that requires transfer RNA for its activity. Nucleic Acids Res 20: 3737–3742.
[2]  Nashimoto M (1993) 3′ truncated tRNAArg is essential for in vitro specific cleavage of partially synthesized mouse 18S rRNA. Nucleic Acids Res 21: 4696–4702.
[3]  Nashimoto M (1995) Conversion of mammalian tRNA 3′ processing endoribonuclease to four-base-recognizing RNA cutters. Nucleic Acids Res 23: 3642–3647.
[4]  Nashimoto M (1997) Distribution of both lengths and 5′ terminal nucleotides of mammalian pre-tRNA 3′ trailers reflects properties of 3′ processing endoribonuclease. Nucleic Acids Res 25: 1148–1154.
[5]  Takaku H, Minagawa A, Takagi M, Nashimoto M (2003) A candidate prostate cancer susceptibility gene encodes tRNA 3′ processing endoribonuclease. Nucleic Acids Res 31: 2272–2278.
[6]  Takaku H, Minagawa A, Takagi M, Nashimoto M (2004) The N-terminal half-domain of the long form of tRNase Z is required for the RNase 65 activity. Nucleic Acids Res 32: 4429–4438.
[7]  Nashimoto M (1996) Specific cleavage of target RNAs from HIV-1 with 5′ half tRNA by mammalian tRNA 3′ processing endoribonuclease. RNA 2: 523–534.
[8]  Nashimoto M (2000) Anomalous RNA substrates for mammalian tRNA 3′ processing endoribonuclease. FEBS Lett 472: 179–186.
[9]  Takaku H, Minagawa A, Takagi M, Nashimoto M (2004) A novel 4-base-recognizing RNA cutter that can remove the single 3′ terminal nucleotides from RNA molecules. Nucleic Acids Res 32: e91.
[10]  Nashimoto M, Geary S, Tamura M, Kaspar R (1998) RNA heptamers that direct RNA cleavage by mammalian tRNA 3′ processing endoribonuclease. Nucleic Acids Res 26: 2565–2572.
[11]  Nashimoto M, Tamura M, Kaspar RL (1999) Minimum requirements for substrates of mammalian tRNA 3′ processing endoribonuclease. Biochemistry 38: 12089–12096.
[12]  Shibata HS, Takaku H, Takagi M, Nashimoto M (2005) The T loop structure is dispensable for substrate recognition by tRNase ZL. J Biol Chem 280: 22326–22334.
[13]  Tamura M, Nashimoto C, Miyake N, Daikuhara Y, Ochi K, et al. (2003) Intracellular mRNA cleavage by 3′ tRNase under the direction of 2′-O-methyl RNA heptamers. Nucleic Acids Res 31: 4354–4360.
[14]  Habu Y, Miyano-Kurosaki N, Kitano M, Endo Y, Yukita M, et al. (2005) Inhibition of HIV-1 gene expression by retroviral vector-mediated small-guide RNAs that direct specific RNA cleavage by tRNase ZL. Nucleic Acids Res 33: 235–243.
[15]  Nakashima A, Takaku H, Shibata HS, Negishi Y, Takagi M, et al. (2007) Gene-silencing by the tRNA maturase tRNase ZL under the direction of small guide RNA. Gene Therapy 14: 78–85.
[16]  Elbarbary RA, Takaku H, Tamura M, Nashimoto M (2009) Inhibition of vascular endothelial growth factor expression by TRUE gene silencing. Biochem and Biophys Res Commun 379: 924–927.
[17]  Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20: 515–524.
[18]  O'Donnell KA, Boeke JD (2007) Mighty Piwis defend the germline against genome intruders. Cell 129: 37–44.
[19]  Kawaji H, Nakamura M, Takahashi Y, Sandelin A, Katayama S, et al. (2008) Hidden layers of human small RNAs. BMC Genomics 9: 157.
[20]  J?chl C, Rederstorff M, Hertel J, Stadler PF, Hofacker IL, et al. (2008) Small ncRNA transcriptome analysis from Aspergillus fumigatus suggests a novel mechanism for regulation of protein synthesis. Nucleic Acids Res 36: 2677–2689.
[21]  Thompson DM, Lu C, Green PJ, Parker R (2008) tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA 14: 2095–2103.
[22]  Thompson DM, Parker R (2009) The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J Cell Biol 185: 43–50.
[23]  Yamasaki S, Ivanov P, Hu GF, Anderson P (2009) Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol 185: 35–42.
[24]  Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241: 770–786.
[25]  Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28: 27–30.
[26]  Cokol M, Nair R, Rost B (2000) Finding nuclear localization signals. EMBO reports 1: 411–415.
[27]  Korver W, Guevara C, Chen Y, Neuteboom S, Bookstein R, et al. (2003) The product of the candidate prostate cancer susceptibility gene ELAC2 interacts with the γ-tubulin complex. Int J Cancer 104: 283–288.
[28]  Noda D, Itoh S, Watanabe Y, Inamitsu M, Dennler S, et al. (2006) ELAC2, a putative prostate cancer susceptibility gene product, potentiates TGF-beta/Smad-induced growth arrest of prostate cells. Oncogene 25: 5591–5600.
[29]  Yajnik V, Paulding C, Sordella R, McClatchey AI, Saito M, et al. (2003) DOCK4, a GTPase activator, is disrupted during tumorigenesis. Cell 112: 673–684.
[30]  Moore CA, Parkin CA, Bidet Y, Ingham PW (2007) A role for the Myoblast city homologues Dock1 and Dock5 and the adaptor proteins Crk and Crk-like in zebrafish myoblast fusion. Development 134: 3145–3153.
[31]  Tan KM, Chan SL, Tan KO, Yu VC (2001) The Caenorhabditis elegans sex-determining protein FEM-2 and its human homologue, hFEM-2, are Ca2+/calmodulin-dependent protein kinase phosphatases that promote apoptosis. J Biol Chem 276: 44193–44202.
[32]  Harvey BP, Banga SS, Ozer HL (2004) Regulation of the multifunctional Ca2+/calmodulin-dependent protein kinase II by the PP2C phosphatase PPM1F in fibroblasts. J Biol Chem 279: 24889–24898.
[33]  Backs J, Backs T, Bezprozvannaya S, McKinsey TA, Olson EN (2008) Histone deacetylase 5 acquires calcium/calmodulin-dependent kinase II responsiveness by oligomerization with histone deacetylase 4. Mol Cell Biol 28: 3437–3445.
[34]  Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, et al. (2004) Human Argonaute2 Mediates RNA Cleavage Targeted by miRNAs and siRNAs. Molecular Cell 15: 185–197.
[35]  Pfeffer S, Lagos-Quintana M, Tuschl T (2003) Cloning of small RNA molecules. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidmann JG, Smith JA, Struhl K, editors. Current Protocols in Molecular Biology. New York: John Wiley and Sons. pp. 26.24.21–26.24.16.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133