Chlamydiae are obligate intracellular pathogens that are sensitive to pro-inflammatory cytokine interferon-γ. IFN-γ-inducible murine p47 GTPases have been demonstrated to function in resistance to chlamydia infection in vivo and in vitro. Because the human genome does not encode IFN-γ-inducible homologues of these proteins, the significance of the p47 GTPase findings to chlamydia pathogenesis in humans is unclear. Here we report a pair of IFN-γ-inducible proteins, the human guanylate binding proteins (hGBPs) 1 and 2 that potentiate the anti-chlamydial properties of IFN-γ. hGBP1 and 2 localize to the inclusion membrane, and their anti-chlamydial functions required the GTPase domain. Alone, hGBP1 or 2 have mild, but statistically significant and reproducible negative effects on the growth of Chlamydia trachomatis, whilst having potent anti-chlamydial activity in conjunction with treatment with a sub-inhibitory concentration of IFN-γ. Thus, hGBPs appear to potentiate the anti-chlamydial effects of IFN-γ. Indeed, depletion of hGBP1 and 2 in cells treated with IFN-γ led to an increase in inclusion size, indicative of better growth. Interestingly, chlamydia species/strains harboring the full-length version of the putative cytotoxin gene, which has been suggested to confer resistance to IFN-γ was not affected by hGBP overexpression. These findings identify the guanylate binding proteins as potentiators of IFN-γ inhibition of C. trachomatis growth, and may be the targets of the chlamydial cytotoxin.
References
[1]
Perry LL, Su H, Feilzer K, Messer R, Hughes S, et al. (1999) Differential sensitivity of distinct Chlamydia trachomatis isolates to IFN-gamma-mediated inhibition. J Immunol 162: 3541–3548.
[2]
Su H, Messer R, Whitmire W, Hughes S, Caldwell HD (2000) Subclinical chlamydial infection of the female mouse genital tract generates a potent protective immune response: implications for development of live attenuated chlamydial vaccine strains. Infect Immun 68: 192–196.
[3]
Yang X (2001) Distinct function of Th1 and Th2 type delayed type hypersensitivity: protective and pathological reactions to chlamydial infection. Microsc Res Tech 53: 273–277.
[4]
Wang S, Fan Y, Brunham RC, Yang X (1999) IFN-gamma knockout mice show Th2-associated delayed-type hypersensitivity and the inflammatory cells fail to localize and control chlamydial infection. Eur J Immunol 29: 3782–3792.
[5]
Byrne GI, Lehmann LK, Landry GJ (1986) Induction of tryptophan catabolism is the mechanism for gamma-interferon-mediated inhibition of intracellular Chlamydia psittaci replication in T24 cells. Infect Immun 53: 347–351.
[6]
Kane CD, Vena RM, Ouellette SP, Byrne GI (1999) Intracellular tryptophan pool sizes may account for differences in gamma interferon-mediated inhibition and persistence of chlamydial growth in polarized and nonpolarized cells. Infect Immun 67: 1666–1671.
[7]
Beatty WL, Belanger TA, Desai AA, Morrison RP, Byrne GI (1994) Tryptophan depletion as a mechanism of gamma interferon-mediated chlamydial persistence. Infect Immun 62: 3705–3711.
[8]
Thomas SM, Garrity LF, Brandt CR, Schobert CS, Feng GS, et al. (1993) IFN-gamma-mediated antimicrobial response. Indoleamine 2,3-dioxygenase-deficient mutant host cells no longer inhibit intracellular Chlamydia spp. or Toxoplasma growth. J Immunol 150: 5529–5534.
[9]
Carlin JM, Borden EC, Byrne GI (1989) Interferon-induced indoleamine 2,3-dioxygenase activity inhibits Chlamydia psittaci replication in human macrophages. J Interferon Res 9: 329–337.
[10]
Byrne GI, Lehmann LK, Kirschbaum JG, Borden EC, Lee CM, et al. (1986) Induction of tryptophan degradation in vitro and in vivo: a gamma-interferon-stimulated activity. J Interferon Res 6: 389–396.
[11]
Brusic V, Pillai RS, Silva DG, Petrovsky N, Schonbach C (2003) Cytokine-related genes identified from the RIKEN full-length mouse cDNA data set. Genome Res 13: 1307–1317.
[12]
Schwemmle M, Kaspers B, Irion A, Staeheli P, Schultz U (1996) Chicken guanylate-binding protein. Conservation of GTPase activity and induction by cytokines. J Biol Chem 271: 10304–10308.
[13]
Lew DJ, Decker T, Strehlow I, Darnell JE (1991) Overlapping elements in the guanylate-binding protein gene promoter mediate transcriptional induction by alpha and gamma interferons. Mol Cell Biol 11: 182–191.
[14]
Cheng YS, Becker-Manley MF, Rucker RG, Borden EC (1988) Accumulation of guanylate binding proteins in patients treated with interferons. J Interferon Res 8: 385–391.
Strehlow I, Lohmann-Matthes ML, Decker T (1994) The interferon-inducible GBP1 gene: structure and mapping to human chromosome 1. Gene 144: 295–299.
[17]
Persano L, Moserle L, Esposito G, Bronte V, Barbieri V, et al. (2009) Interferon-alpha counteracts the angiogenic switch and reduces tumor cell proliferation in a spontaneous model of prostatic cancer. Carcinogenesis 30: 851–860.
[18]
Pammer J, Reinisch C, Birner P, Pogoda K, Sturzl M, et al. (2006) Interferon-alpha prevents apoptosis of endothelial cells after short-term exposure but induces replicative senescence after continuous stimulation. Lab Invest 86: 997–1007.
[19]
Carter CC, Gorbacheva VY, Vestal DJ (2005) Inhibition of VSV and EMCV replication by the interferon-induced GTPase, mGBP-2: differential requirement for wild-type GTP binding domain. Arch Virol 150: 1213–1220.
[20]
Lubeseder-Martellato C, Guenzi E, Jorg A, Topolt K, Naschberger E, et al. (2002) Guanylate-binding protein-1 expression is selectively induced by inflammatory cytokines and is an activation marker of endothelial cells during inflammatory diseases. Am J Pathol 161: 1749–1759.
[21]
Guenzi E, Topolt K, Cornali E, Lubeseder-Martellato C, Jorg A, et al. (2001) The helical domain of GBP-1 mediates the inhibition of endothelial cell proliferation by inflammatory cytokines. Embo J 20: 5568–5577.
[22]
Anderson SL, Carton JM, Lou J, Xing L, Rubin BY (1999) Interferon-induced guanylate binding protein-1 (GBP-1) mediates an antiviral effect against vesicular stomatitis virus and encephalomyocarditis virus. Virology 256: 8–14.
[23]
MacMicking JD (2004) IFN-inducible GTPases and immunity to intracellular pathogens. Trends Immunol 25: 601–609.
[24]
Cheng YS, Patterson CE, Staeheli P (1991) Interferon-induced guanylate-binding proteins lack an N(T)KXD consensus motif and bind GMP in addition to GDP and GTP. Mol Cell Biol 11: 4717–4725.
[25]
Cheng YS, Becker-Manley MF, Chow TP, Horan DC (1985) Affinity purification of an interferon-induced human guanylate-binding protein and its characterization. J Biol Chem 260: 15834–15839.
[26]
Modiano N, Lu YE, Cresswell P (2005) Golgi targeting of human guanylate-binding protein-1 requires nucleotide binding, isoprenylation, and an IFN-gamma-inducible cofactor. Proc Natl Acad Sci U S A 102: 8680–8685.
[27]
Miyairi I, Tatireddigari VR, Mahdi OS, Rose LA, Belland RJ, et al. (2007) The p47 GTPases Iigp2 and Irgb10 regulate innate immunity and inflammation to murine Chlamydia psittaci infection. J Immunol 179: 1814–1824.
[28]
Bernstein-Hanley I, Coers J, Balsara ZR, Taylor GA, Starnbach MN, et al. (2006) The p47 GTPases Igtp and Irgb10 map to the Chlamydia trachomatis susceptibility locus Ctrq-3 and mediate cellular resistance in mice. Proc Natl Acad Sci U S A 103: 14092–14097.
[29]
Nelson DE, Virok DP, Wood H, Roshick C, Johnson RM, et al. (2005) Chlamydial IFN-gamma immune evasion is linked to host infection tropism. Proc Natl Acad Sci U S A 102: 10658–10663.
[30]
Coers J, Bernstein-Hanley I, Grotsky D, Parvanova I, Howard JC, et al. (2008) Chlamydia muridarum evades growth restriction by the IFN-gamma-inducible host resistance factor Irgb10. J Immunol 180: 6237–6245.
[31]
Bernstein-Hanley I, Balsara ZR, Ulmer W, Coers J, Starnbach MN, et al. (2006) Genetic analysis of susceptibility to Chlamydia trachomatis in mouse. Genes Immun 7: 122–129.
[32]
Al-Zeer MA, Al-Younes HM, Braun PR, Zerrahn J, Meyer TF (2009) IFN-gamma-inducible Irga6 mediates host resistance against Chlamydia trachomatis via autophagy. PLoS One 4: e4588.
[33]
Bekpen C, Marques-Bonet T, Alkan C, Antonacci F, Leogrande MB, et al. (2009) Death and resurrection of the human IRGM gene. PLoS Genet 5: e1000403.
[34]
Bekpen C, Hunn JP, Rohde C, Parvanova I, Guethlein L, et al. (2005) The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage. Genome Biol 6: R92.
[35]
Lane BJ, Mutchler C, Al Khodor S, Grieshaber SS, Carabeo RA (2008) Chlamydial entry involves TARP binding of guanine nucleotide exchange factors. PLoS Pathog 4: e1000014.
[36]
Prakash B, Praefcke GJ, Renault L, Wittinghofer A, Herrmann C (2000) Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins. Nature 403: 567–571.
[37]
Perry LL, Feilzer K, Hughes S, Caldwell HD (1999) Clearance of Chlamydia trachomatis from the murine genital mucosa does not require perforin-mediated cytolysis or Fas-mediated apoptosis. Infect Immun 67: 1379–1385.
[38]
Perry LL, Feilzer K, Caldwell HD (1997) Immunity to Chlamydia trachomatis is mediated by T helper 1 cells through IFN-gamma-dependent and -independent pathways. J Immunol 158: 3344–3352.
[39]
Paguirigan AM, Byrne GI, Becht S, Carlin JM (1994) Cytokine-mediated indoleamine 2,3-dioxygenase induction in response to Chlamydia infection in human macrophage cultures. Infect Immun 62: 1131–1136.
[40]
Ghosh A, Praefcke GJ, Renault L, Wittinghofer A, Herrmann C (2006) How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP. Nature 440: 101–104.
[41]
Singh SB, Davis AS, Taylor GA, Deretic V (2006) Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313: 1438–1441.
[42]
Deretic V, Singh S, Master S, Harris J, Roberts E, et al. (2006) Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism. Cell Microbiol 8: 719–727.
[43]
Treadow BR, Khairallah EA (1972) Regulation of phospho-enol-pyruvate carboxykinase during starvation and glucose repression. Nat New Biol 239: 131–133.
[44]
Ballard FJ, Hopgood MF (1973) Phosphopyruvate carboxylase induction by L-tryptophan. Effects on synthesis and degradation of the enzyme. Biochem J 136: 259–264.
[45]
Sakurai T, Miyazawa S, Shindo Y, Hashimoto T (1974) The effect of tryptophan administration on fatty acid synthesis in the liver of the fasted normal rat. Biochim Biophys Acta 360: 275–288.