全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Long-Lasting Hippocampal Synaptic Protein Loss in a Mouse Model of Posttraumatic Stress Disorder

DOI: 10.1371/journal.pone.0042603

Full-Text   Cite this paper   Add to My Lib

Abstract:

Despite intensive research efforts, the molecular pathogenesis of posttraumatic stress disorder (PTSD) and especially of the hippocampal volume loss found in the majority of patients suffering from this anxiety disease still remains elusive. We demonstrated before that trauma-induced hippocampal shrinkage can also be observed in mice exhibiting a PTSD-like syndrome. Aiming to decipher the molecular correlates of these trans-species posttraumatic hippocampal alterations, we compared the expression levels of a set of neurostructural marker proteins between traumatized and control mice at different time points after their subjection to either an electric footshock or mock treatment which was followed by stressful re-exposure in several experimental groups. To our knowledge, this is the first systematic in vivo study analyzing the long-term neuromolecular sequelae of acute traumatic stress combined with re-exposure. We show here that a PTSD-like syndrome in mice is accompanied by a long-lasting reduction of hippocampal synaptic proteins which interestingly correlates with the strength of the generalized and conditioned fear response but not with the intensity of hyperarousal symptoms. Furthermore, we demonstrate that treatment with the serotonin reuptake inhibitor (SSRI) fluoxetine is able to counteract both the PTSD-like syndrome and the posttraumatic synaptic protein loss. Taken together, this study demonstrates for the first time that a loss of hippocampal synaptic proteins is associated with a PTSD-like syndrome in mice. Further studies will have to reveal whether these findings are transferable to PTSD patients.

References

[1]  Yehuda R, Cai G, Golier JA, Sarapas C, Galea S, et al. (2009) Gene expression patterns associated with posttraumatic stress disorder following exposure to the World Trade Center attacks. Biol Psychiatry 66: 708–711 doi:10.1016/j.biopsych.2009.02.034.
[2]  Sananbenesi F, Fischer A, Wang X, Schrick C, Neve R, et al. (2007) A hippocampal Cdk5 pathway regulates extinction of contextual fear. Nat Neurosci 10: 1012–1019 doi:10.1038/nn1943.
[3]  Mehta D, Binder EB (2012) Gene × environment vulnerability factors for PTSD: The HPA-axis. Neuropharmacology 62: 654–662 doi:10.1016/j.neuropharm.2011.03.009.
[4]  Murgatroyd C, Patchev AV, Wu Y, Micale V, Bockmühl Y, et al. (2009) Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 12: 1559–1566 doi:10.1038/nn.2436.
[5]  Schmidt U, Holsboer F, Rein T (2011) Epigenetic aspects of posttraumatic stress disorder. Dis Markers 30: 77–87 doi:10.3233/DMA-2011-0749.
[6]  Yehuda R (2009) Status of glucocorticoid alterations in post-traumatic stress disorder. Ann N Y Acad Sci 1179: 56–69 doi:10.1111/j.1749-6632.2009.04979.x.
[7]  Bowirrat A, Chen TJH, Blum K, Madigan M, Bailey JA, et al. (2010) Neuro-psychopharmacogenetics and Neurological Antecedents of Posttraumatic Stress Disorder: Unlocking the Mysteries of Resilience and Vulnerability. Curr Neuropharmacol 8: 335–358 doi:10.2174/157015910793358123.
[8]  Foa EB, Meadows EA (1997) Psychosocial treatments for posttraumatic stress disorder: a critical review. Annu Rev Psychol 48: 449–480 doi:10.1146/annurev.psych.48.1.449.
[9]  Gurvits TV, Shenton ME, Hokama H, Ohta H, Lasko NB, et al. (1996) Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol Psychiatry 40: 1091–1099 doi:10.1016/S0006-3223(96)00229-6.
[10]  Apfel BA, Ross J, Hlavin J, Meyerhoff DJ, Metzler TJ, et al. (2011) Hippocampal Volume Differences in Gulf War Veterans with Current Versus Lifetime Posttraumatic Stress Disorder Symptoms. Biological Psychiatry 69: 541–548 doi:16/j.biopsych.2010.09.044.
[11]  Golub Y, Kaltwasser SF, Mauch CP, Herrmann L, Schmidt U, et al. (2011) Reduced hippocampus volume in the mouse model of Posttraumatic Stress Disorder. J Psychiatr Res 45: 650–659 doi:10.1016/j.jpsychires.2010.10.014.
[12]  Beasley CL, Honer WG, Bergmann K, Falkai P, Lütjohann D, et al. (2005) Reductions in cholesterol and synaptic markers in association cortex in mood disorders. Bipolar Disord 7: 449–455 doi:10.1111/j.1399-5618.2005.00239.x.
[13]  Vawter MP, Thatcher L, Usen N, Hyde TM, Kleinman JE, et al. (2002) Reduction of synapsin in the hippocampus of patients with bipolar disorder and schizophrenia. Mol Psychiatry 7: 571–578 doi:10.1038/sj.mp.4001158.
[14]  Chen Q, He G, Qin W, Chen Q, Zhao X, et al. (2004) Family-based association study of synapsin II and schizophrenia. Am J Hum Genet 75: 873–877 doi:10.1086/425588.
[15]  Alfonso J, Frick LR, Silberman DM, Palumbo ML, Genaro AM, et al. (2006) Regulation of hippocampal gene expression is conserved in two species subjected to different stressors and antidepressant treatments. Biol Psychiatry 59: 244–251 doi:10.1016/j.biopsych.2005.06.036.
[16]  Briones A, Gagno S, Martisova E, Dobarro M, Aisa B, et al. (2012) Stress-induced anhedonia is associated with an increase in Alzheimer’s disease-related markers. Br J Pharmacol 165: 897–907 doi:10.1111/j.1476-5381.2011.01602.x.
[17]  Dagyte G, Luiten PG, De Jager T, Gabriel C, Moca?r E, et al. (2011) Chronic stress and antidepressant agomelatine induce region-specific changes in synapsin I expression in the rat brain. J Neurosci Res 89: 1646–1657 doi:10.1002/jnr.22697.
[18]  Elizalde N, Pastor PM, Garcia-García AL, Serres F, Venzala E, et al. (2010) Regulation of markers of synaptic function in mouse models of depression: chronic mild stress and decreased expression of VGLUT1. J Neurochem 114: 1302–1314 doi:10.1111/j.1471-4159.2010.06854.x.
[19]  Gao Y, Bezchlibnyk YB, Sun X, Wang J-F, McEwen BS, et al. (2006) Effects of restraint stress on the expression of proteins involved in synaptic vesicle exocytosis in the hippocampus. Neuroscience 141: 1139–1148 doi:10.1016/j.neuroscience.2006.04.066.
[20]  García-Cáceres C, Lagunas N, Calmarza-Font I, Azcoitia I, Diz-Chaves Y, et al. (2010) Gender differences in the long-term effects of chronic prenatal stress on the HPA axis and hypothalamic structure in rats. Psychoneuroendocrinology 35: 1525–1535 doi:10.1016/j.psyneuen.2010.05.006.
[21]  Law AJ, Pei Q, Walker M, Gordon-Andrews H, Weickert CS, et al. (2009) Early parental deprivation in the marmoset monkey produces long-term changes in hippocampal expression of genes involved in synaptic plasticity and implicated in mood disorder. Neuropsychopharmacology 34: 1381–1394 doi:10.1038/npp.2008.106.
[22]  Llorente R, Miguel-Blanco C, Aisa B, Lachize S, Borcel E, et al. (2011) Long term sex-dependent psychoneuroendocrine effects of maternal deprivation and juvenile unpredictable stress in rats. J Neuroendocrinol 23: 329–344 doi:10.1111/j.1365-2826.2011.02109.x.
[23]  Sterlemann V, Rammes G, Wolf M, Liebl C, Ganea K, et al. (2010) Chronic social stress during adolescence induces cognitive impairment in aged mice. Hippocampus 20: 540–549 doi:10.1002/hipo.20655.
[24]  Thome J, Pesold B, Baader M, Hu M, Gewirtz JC, et al. (2001) Stress differentially regulates synaptophysin and synaptotagmin expression in hippocampus. Biol Psychiatry 50: 809–812.
[25]  Ary AW, Aguilar VR, Szumlinski KK, Kippin TE (2007) Prenatal stress alters limbo-corticostriatal Homer protein expression. Synapse 61: 938–941 doi:10.1002/syn.20439.
[26]  Lui CC, Wang J-Y, Tain Y-L, Chen Y-C, Chang K-A, et al. (2011) Prenatal stress in rat causes long-term spatial memory deficit and hippocampus MRI abnormality: Differential effects of postweaning enriched environment. Neurochem Int 58: 434–441 doi:10.1016/j.neuint.2011.01.002.
[27]  Siegel SJ, Ginsberg SD, Hof PR, Foote SL, Young WG, et al. (1993) Effects of social deprivation in prepubescent rhesus monkeys: immunohistochemical analysis of the neurofilament protein triplet in the hippocampal formation. Brain Res 619: 299–305.
[28]  Yan J, Sun X-B, Wang H-Q, Zhao H, Zhao X-Y, et al. (2010) Chronic restraint stress alters the expression and distribution of phosphorylated tau and MAP2 in cortex and hippocampus of rat brain. Brain Res 1347: 132–141 doi:10.1016/j.brainres.2010.05.074.
[29]  Yang C, Wang G, Wang H, Liu Z, Wang X (2009) Cytoskeletal alterations in rat hippocampus following chronic unpredictable mild stress and re-exposure to acute and chronic unpredictable mild stress. Behav Brain Res 205: 518–524 doi:10.1016/j.bbr.2009.08.008.
[30]  Siegmund A, Wotjak CT (2007) A mouse model of posttraumatic stress disorder that distinguishes between conditioned and sensitised fear. J Psychiatr Res 41: 848–860.
[31]  Martenyi F, Soldatenkova V (2006) Fluoxetine in the acute treatment and relapse prevention of combat-related post-traumatic stress disorder: Analysis of the veteran group of a placebo-controlled, randomized clinical trial. Eur Neuropsychopharmacol 16: 340–349 doi:10.1016/j.euroneuro.2005.10.007.
[32]  Fasani F, Bocquet A, Robert P, Peterson A, Eyer J (2004) The amount of neurofilaments aggregated in the cell body is controlled by their increased sensitivity to trypsin-like proteases. J Cell Sci 117: 861–869 doi:10.1242/jcs.00940.
[33]  Melloni RH Jr, Hemmendinger LM, Hamos JE, DeGennaro LJ (1993) Synapsin I gene expression in the adult rat brain with comparative analysis of mRNA and protein in the hippocampus. J Comp Neurol 327: 507–520 doi:10.1002/cne.903270404.
[34]  Vaynman S, Ying Z, Gómez-Pinilla F (2004) Exercise induces BDNF and synapsin I to specific hippocampal subfields. J Neurosci Res 76: 356–362 doi:10.1002/jnr.20077.
[35]  Nowicka D, Liguz-Lecznar M, Skangiel-Kramska J (2003) A surface antigen delineating a subset of neurons in the primary somatosensory cortex of the mouse. Acta Neurobiol Exp (Wars) 63: 185–195.
[36]  Wu L-M, Han H, Wang Q-N, Hou H-L, Tong H, et al. (2007) Mifepristone repairs region-dependent alteration of synapsin I in hippocampus in rat model of depression. Neuropsychopharmacology 32: 2500–2510 doi:10.1038/sj.npp.1301386.
[37]  Zink M, Vollmayr B, Gebicke-Haerter PJ, Henn FA (2010) Reduced expression of glutamate transporters vGluT1, EAAT2 and EAAT4 in learned helpless rats, an animal model of depression. Neuropharmacology 58: 465–473 doi:10.1016/j.neuropharm.2009.09.005.
[38]  Reinés A, Cereseto M, Ferrero A, Sifonios L, Podestá MF, et al. (2008) Maintenance treatment with fluoxetine is necessary to sustain normal levels of synaptic markers in an experimental model of depression: correlation with behavioral response. Neuropsychopharmacology 33: 1896–1908 doi:10.1038/sj.npp.1301596.
[39]  Larsen MH, Hay-Schmidt A, R?nn LCB, Mikkelsen JD (2008) Temporal expression of brain-derived neurotrophic factor (BDNF) mRNA in the rat hippocampus after treatment with selective and mixed monoaminergic antidepressants. Eur J Pharmacol 578: 114–122 doi:10.1016/j.ejphar.2007.08.050.
[40]  Rapp S, Baader M, Hu M, Jennen-Steinmetz C, Henn FA, et al. (2004) Differential regulation of synaptic vesicle proteins by antidepressant drugs. Pharmacogenomics J 4: 110–113 doi:10.1038/sj.tpj.6500229.
[41]  Chang Y-C, Tzeng S-F, Yu L, Huang A-M, Lee H-T, et al. (2006) Early-life fluoxetine exposure reduced functional deficits after hypoxic-ischemia brain injury in rat pups. Neurobiol Dis 24: 101–113 doi:10.1016/j.nbd.2006.06.001.
[42]  Guest KA, Dyck BA, Shethwala S, Mishra RK (2010) Atypical antipsychotic drugs upregulate synapsin II in the prefrontal cortex of post-mortem samples obtained from patients with schizophrenia. Schizophr Res 120: 229–231 doi:10.1016/j.schres.2010.03.029.
[43]  Ionescu IA, Dine J, Yen Y-C, Buell DR, Herrmann L, et al.. (2012) Intranasally Administered Neuropeptide S (NPS) Exerts Anxiolytic Effects Following Internalization Into NPS Receptor-Expressing Neurons. Neuropsychopharmacology. Available:http://www.ncbi.nlm.nih.gov/pubmed/22278?093. Accessed 30 January 2012.
[44]  Crochemore C, Lu J, Wu Y, Liposits Z, Sousa N, et al. (2005) Direct targeting of hippocampal neurons for apoptosis by glucocorticoids is reversible by mineralocorticoid receptor activation. Mol Psychiatry 10: 790–798 doi:10.1038/sj.mp.4001679.
[45]  Grillo CA, Piroli GG, Wood GE, Reznikov LR, McEwen BS, et al. (2005) Immunocytochemical analysis of synaptic proteins provides new insights into diabetes-mediated plasticity in the rat hippocampus. Neuroscience 136: 477–486 doi:10.1016/j.neuroscience.2005.08.019.
[46]  Revest J-M, Kaouane N, Mondin M, Le Roux A, Rougé-Pont F, et al.. (2010) The enhancement of stress-related memory by glucocorticoids depends on synapsin-Ia/Ib. Mol Psychiatry 15: 1125, 1140–1151. doi:10.1038/mp.2010.40.
[47]  Geske FJ, Lieberman R, Strange R, Gerschenson LE (2001) Early stages of p53-induced apoptosis are reversible. Cell Death Differ 8: 182–191 doi:10.1038/sj.cdd.4400786.
[48]  Mobley P, Greengard P (1985) Evidence for widespread effects of noradrenaline on axon terminals in the rat frontal cortex. Proc Natl Acad Sci USA 82: 945–947.
[49]  Qi C, Roseboom PH, Nanda SA, Lane JC, Speers JM, et al. (2010) Anxiety-related behavioral inhibition in rats: a model to examine mechanisms underlying the risk to develop stress-related psychopathology. Genes Brain Behav 9: 974–984 doi:10.1111/j.1601-183X.2010.00636.x.
[50]  Mahan AL, Ressler KJ (2012) Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci 35: 24–35 doi:10.1016/j.tins.2011.06.007.
[51]  Gamo NJ, Arnsten AFT (2011) Molecular modulation of prefrontal cortex: rational development of treatments for psychiatric disorders. Behav Neurosci 125: 282–296 doi:10.1037/a0023165.
[52]  Hughes KC, Shin LM (2011) Functional neuroimaging studies of post-traumatic stress disorder. Expert Rev Neurother 11: 275–285 doi:10.1586/ern.10.198.
[53]  Semmler A, Okulla T, Sastre M, Dumitrescu-Ozimek L, Heneka MT (2005) Systemic inflammation induces apoptosis with variable vulnerability of different brain regions. J Chem Neuroanat 30: 144–157 doi:10.1016/j.jchemneu.2005.07.003.
[54]  Wang Z, Neylan TC, Mueller SG, Lenoci M, Truran D, et al. (2010) Magnetic resonance imaging of hippocampal subfields in posttraumatic stress disorder. Arch Gen Psychiatry 67: 296–303 doi:10.1001/archgenpsychiatry.2009.205.
[55]  Gilbertson MW, Shenton ME, Ciszewski A, Kasai K, Lasko NB, et al. (2002) Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat Neurosci 5: 1242–1247 doi:10.1038/nn958.
[56]  Pitman RK, Gilbertson MW, Gurvits TV, May FS, Lasko NB, et al. (2006) Clarifying the origin of biological abnormalities in PTSD through the study of identical twins discordant for combat exposure. Ann N Y Acad Sci 1071: 242–254 doi:10.1196/annals.1364.019.
[57]  Matrisciano F, Busceti CL, Bucci D, Orlando R, Caruso A, et al. (2011) Induction of the Wnt antagonist Dickkopf-1 is involved in stress-induced hippocampal damage. PLoS ONE 6: e16447 doi:10.1371/journal.pone.0016447.
[58]  Liu W, Shu X-J, Chen F-Y, Zhu C, Sun X-H, et al. (2011) Tianeptine reverses stress-induced asymmetrical hippocampal volume and N-acetylaspartate loss in rats: an in vivo study. Psychiatry Res 194: 385–392 doi:10.1016/j.pscychresns.2011.02.007.
[59]  Felmingham K, Williams LM, Whitford TJ, Falconer E, Kemp AH, et al. (2009) Duration of posttraumatic stress disorder predicts hippocampal grey matter loss. Neuroreport 20: 1402–1406 doi:10.1097/WNR.0b013e3283300fbc.
[60]  DeCarolis NA, Eisch AJ (2010) Hippocampal neurogenesis as a target for the treatment of mental illness: a critical evaluation. Neuropharmacology 58: 884–893 doi:10.1016/j.neuropharm.2009.12.013.
[61]  McEwen BS (1999) Stress and hippocampal plasticity. Annu Rev Neurosci 22: 105–122 doi:10.1146/annurev.neuro.22.1.105.
[62]  Czeh B, Lucassen PJ (2007) What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implicated? Eur Arch Psychiatry Clin Neurosci 257: 250–260.
[63]  Diehl LA, Alvares LO, Noschang C, Engelke D, Andreazza AC, et al. (2012) Long-lasting effects of maternal separation on an animal model of post-traumatic stress disorder: effects on memory and hippocampal oxidative stress. Neurochem Res 37: 700–707 doi:10.1007/s11064-011-0660-6.
[64]  Cole J, Costafreda SG, McGuffin P, Fu CHY (2011) Hippocampal atrophy in first episode depression: a meta-analysis of magnetic resonance imaging studies. J Affect Disord 134: 483–487 doi:10.1016/j.jad.2011.05.057.
[65]  Pamplona FA, Henes K, Micale V, Mauch CP, Takahashi RN, et al. (2011) Prolonged fear incubation leads to generalized avoidance behavior in mice. J Psychiatr Res 45: 354–360 doi:10.1016/j.jpsychires.2010.06.015.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133