[1] | Teixeira ARL, Nitz N, Guimaro MC, Gomes C, Santos-Buch CA (2006) Chagas disease. Postg Med J 82(974): 788–798. doi: 10.1136/pgmj.2006.047357
|
[2] | Bittencourt AL (1976) Congenital Chagas disease. Am J Dis Child 130(1): 97–103. doi: 10.1001/archpedi.1976.02120020099020
|
[3] | Bittencourt AL (1992) Possible risk factors for vertical transmission of Chagas' disease. Rev Inst Med Trop Sao Paulo 34(5): 403–408. doi: 10.1590/S0036-46651992000500006
|
[4] | Bittencourt AL, Barbosa HS (1972) Importance of the study of the macerated fetus for the diagnosis of congenital Chagas' disease. Rev Inst Med Trop Sao Paulo 14(4): 260–263.
|
[5] | Bittencourt AL, Barbosa HS (1972) Incidence of congenital transmission of Chagas' disease in abortion. Rev Inst Med Trop Sao Paulo 14(4): 257–259.
|
[6] | Bittencourt AL, Barbosa HS, Rocha T, Sodré I, Sodré A (1972) Incidence of congenital transmission of Chagas disease in premature births in the Maternidade Tsylla Balbino (Salvador, Bahia). Rev Inst Med Trop Sao Paulo 14(2): 131–134.
|
[7] | Azogue E, La Fuente C, Darras C (1985) Congenital Chagas' disease in Bolivia: epidemiological aspects and pathological findings. Trans R Soc Trop Med Hyg 79(2): 176–180. doi: 10.1016/0035-9203(85)90328-1
|
[8] | World Health Organization (2002) Control of Chagas disease: second report of a WHO Expert Committee. Technical Report Series No. 905 p.
|
[9] | Schmunis GA, Yadon ZE (2009) Chagas disease: A Latin American health problem becoming a world health problem. Acta Trop. doi:10.1016/j.actatropica.2009.11.003.
|
[10] | Teixeira ARL, Nascimento R, Sturm NR (2006) Evolution and Pathology in Chagas Disease. Mem Inst Oswaldo Cruz 101(5): 463–491. doi: 10.1590/S0074-02762006000500001
|
[11] | Prata A (2001) Clinical and epidemiological aspects of Chagas disease. Lancet Infect Dis 1(2): 92–100. doi: 10.1016/S1473-3099(01)00065-2
|
[12] | Lauria-Pires L, Braga MS, Vexenat AC, Nitz N, Sim?es-Barbosa A, et al. (2000) Progressive chronic Chagas heart disease ten years after treatment with anti-Trypanosoma cruzi nitroderivatives. Am J Trop Med Hyg 63(3): 43–55.
|
[13] | Mady C, Ianni BM, de Souza JL Jr (2008) Benznidazole and Chagas disease: can an old drug be the answer to an old problem? Expert Opin Investig Drugs 17(10): 1427–1433. doi: 10.1517/13543784.17.10.1427
|
[14] | Zhang L, Tarleton RL (1999) Parasite persistance correlates with disease severity and localization in chronic Chagas disease. J Infect Dis 180(2): 480–486. doi: 10.1086/314889
|
[15] | Gutierrez FRS, Guedes PMM, Gazzinelli RT, Silva JS (2009) The role of parasite persistence in pathogenesis of Chagas heart disease. Par Immunol 31(11): 673–685. doi: 10.1111/j.1365-3024.2009.01108.x
|
[16] | Santos-Buch CA, Teixeira ARL (1974) The immunology of experimental Chagas' disease. 3. Rejection of allogeneic heart cells in vitro. J Exp Med 140(1): 38–53. doi: 10.1084/jem.140.1.38
|
[17] | Bonney KM, Engman DM (2008) Chagas Heart Disease Pathogenesis: One Mechanism or Many? Curr Mol Med 8(6): 510–518. doi: 10.2174/156652408785748004
|
[18] | Hyland KV, Engman DM (2006) Further thoughts on where we stand on the autoimmunity hypothesis of Chagas disease. Trends Parasitol 22(3): 101–102. doi: 10.1016/j.pt.2006.01.001
|
[19] | Leon JS, Engman DM (2003) The significance of autoimmunity in the pathogenesis of Chagas heart disease. Front Biosci 8: 315–322. doi: 10.2741/1023
|
[20] | El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, et al. (2005) Comparative genomics of trypanosomatid parasitic protozoa. Science 309: 404–409. doi: 10.1126/science.1112181
|
[21] | Weatherly DB, Boehlke C, Tarleton RL (2009) Chromosome level assembly of the hybrid Trypanosoma cruzi genome. BMC Genomics 10: 255. doi: 10.1186/1471-2164-10-255
|
[22] | Dvorak JA, Hall TE, Crane MS, Engel JC, McDaniel JP, et al. (1982) Trypanosoma cruzi: flow cytometric analysis. I. Analysis of total DNA/organism by means of mithramycin-induced fluorescence. J Protozool 29: 430–437. doi: 10.1111/j.1550-7408.1982.tb05427.x
|
[23] | Dvorak JA (1984) The natural heterogeneity of Trypanosoma cruzi: Biological and medical implications. J Cell Biochem 24: 357–371. doi: 10.1002/jcb.240240406
|
[24] | Lewis MD, Llewellyn MS, Gaunt MW, Yeo M, Carrasco HJ, et al. (2009) Flow cytometric analysis and microsatellite genotyping reveal extensive DNA content variation in Trypanosoma cruzi populations and expose contrasts between natural and experimental hybrids. Int J Parasitol 39: 1305–1317. doi: 10.1016/j.ijpara.2009.04.001
|
[25] | Campbell DC, Sturm NR (2009) Trypanosoma cruzi nuclear DNA and its correlation with the parasite lifecycle. Chap 7,. In: Teixeira ARL, Vinaud MC, Castro AM, editors. Emerging Chagas Disease. New York: Bentham Science Publishers.
|
[26] | Simpson AGB, Stevens JR, Lukes J (2006) The evolution and diversity of kinetoplastid flagellates. Trends Parasitol 22(4): 168–174. doi: 10.1016/j.pt.2006.02.006
|
[27] | De Souza W (2009) Structural organization of Trypanosoma cruzi. Mem Inst Oswaldo Cruz 104: 89–100. doi: 10.1590/S0074-02762009000900014
|
[28] | Campbell D, Thomas S, Sturm NR (2003) Transcription in the kinetoplastid protozoa: why be normal? Microbes Infect 5: 1231–1240. doi: 10.1016/j.micinf.2003.09.005
|
[29] | Thomas S, Martinez LL, Westenberger SJ, Sturm NR (2007) A population study of the minicircles in Trypanosoma cruzi: predicting guide RNAs in the absence of empirical RNA editing. BMC Genomics 24 8: 133. doi: 10.1186/1471-2164-8-133
|
[30] | Degrave W, Fragoso SP, Britto C, van Heuverswyn H, Kidane GZ, et al. (1988) Peculiar sequence organization of kinetoplast DNA minicircles from Trypanosoma cruzi. Mol Biochem Parasitol 27(1): 63–70. doi: 10.1016/0166-6851(88)90025-4
|
[31] | Avila HA, Simpson L (1995) Organization and complexity of minicircle-encoded guide RNAs in Trypanosoma cruzi. RNA 1(9): 939–947.
|
[32] | Hines JC, Ray DS (2008) Structure of discontinuities in kinetoplast DNA-associated minicircles during S phase in Crithidia fasciculata. Nucleic Acids Res 36(2): 444–450. doi: 10.1093/nar/gkm1061
|
[33] | Stuart K, Allen TE, Kable ML, Lawson S (1997) Kinetoplastid RNA editing: complexes and catalysts. Curr Opin Chem Biol 1(3): 340–346. doi: 10.1016/S1367-5931(97)80071-3
|
[34] | Hecht MM, Nitz N, Araujo PF, Sousa AO, Rosa A de C, et al. (2010) Inheritance of DNA transferred from American Trypanosomes to human hosts. PLoS One 5(2): e9181. doi: 10.1371/journal.pone.0009181
|
[35] | Günzl A (2003) Transcription.. In: Molecular Medical ParasitologyMarr JJ, Nilson TW, Komuniecki RW, editors. London: Academic Press. pp. 47–65.
|
[36] | Reifur L, Yu LE, Cruz-Reyes J, Vanhartesvelt M, Koslowsky DJ (2010) The impact of mRNA structure on guide RNA targeting in kinetoplastid RNA editing. PLoS One 5(8): e12235. doi: 10.1371/journal.pone.0012235
|
[37] | Teixeira AR, Lacava Z, Santana JM, Luna H (1991) Insertion of Trypanosoma cruzi DNA in the genome of mammal host cell through infection. Rev Soc Bras Med Trop 24: 55–58. doi: 10.1590/S0037-86821991000100010
|
[38] | Teixeira AR, Arga?araz ER, Freitas LH Jr, Lacava ZG, Santana JM, et al. (1994) Possible integration of Trypanosoma cruzi kDNA minicircles into the host cell genome by infection. Mutat Res 305(2): 197–209. doi: 10.1016/0027-5107(94)90240-2
|
[39] | Sim?es-Barbosa A, Arga?araz ER, Barros AM, Rosa Ade C, Alves NP, et al. (2006) Hitchhiking Trypanosoma cruzi minicircle DNA affects gene expression in human host cells via LINE-1 retrotransposon. Mem Inst Oswaldo Cruz 101(8): 833–843. doi: 10.1590/S0074-02762006000800003
|
[40] | International Chicken Genome Sequencing Consortium (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432(7018): 695–716. doi: 10.1038/nature03154
|
[41] | Burt DW, Carr? W, Fell M, Law AS, Antin PB, et al. (2009) The Chicken Gene Nomenclature Committee report. BMC Genomics 10: Suppl 2S5. doi: 10.1186/1471-2164-10-S2-S5
|
[42] | Minter-Goedbloed E, Croon JJ (1981) The susceptibility of chickens to Trypanosoma (Schizotrypanum) cruzi. Trans R Soc Trop Med Hyg 75(3): 350–353. doi: 10.1016/0035-9203(81)90090-0
|
[43] | Buckner FS, Wilson AJ, Van Voorhis WC (1999) Detection of live Trypanosoma cruzi in tissues of infected mice by useing histochemical stain of β-galactosidase. Infect Immun 67(1): 403–409.
|
[44] | Sciamanna I, Vitullo P, Curatolo A, Spadafora C (2009) Retrotransposons, reverse transcriptase and the genesis of new genetic information. Gene 448(2): 180–186. doi: 10.1016/j.gene.2009.07.011
|
[45] | Perez-Morga DL, Englund PT (1993) The attachment of minicircles to kinetoplast DNA networks during replication. Cell 74(4): 267–271. doi: 10.1016/0092-8674(93)90517-t
|
[46] | Moser DR, Kirchhoff LV, Donelson JE (1989) Detection of Trypanosoma cruzi by DNA amplification using the polymerase chain reaction. J Clin Microbiol 27(7): 1477–1482.
|
[47] | Sturm NR, Degrave W, Morel C, Simpson L (1989) Sensitive detection and schizodeme classification of Trypanosoma cruzi cells by amplification of kinetoplast minicircle DNA sequences: use in diagnosis of Chagas' disease. Mol Biochem Parasitol 33: 205–214. doi: 10.1016/0166-6851(89)90082-0
|
[48] | Rudi K, Fossheim T, Jakobsen KS (1999) Restriction cutting independent method for cloning genomic DNA segments outside the boundaries of known sequences. Biotech 27(6): 1170–1177.
|
[49] | Liu YG, Whittier R (1998) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25: 175–181. doi: 10.1016/0888-7543(95)80010-j
|
[50] | Ochsenreiter T, Cipriano M, Hajduk SL (2007) KISS: the kinetoplastid RNA editing sequence search tool. RNA 13(1): 1–4. doi: 10.1261/rna.232907
|
[51] | Ochsenreiter T, Hajduk SL (2006) Alternative editing of cytochrome c oxidase III mRNA in trypanosome mitochondria generates protein diversity. EMBO Rep 7(11): 1128–1133. doi: 10.1038/sj.embor.7400817
|
[52] | Lopez R, Silventoinen V, Robinson S, Kibria A, Gish W (2003) WU-Blast2 server at the European Bioinformatics Institute. Nucleic Acids Res 31(13): 3795–3798. doi: 10.1093/nar/gkg573
|
[53] | Kierszenbaum F, Gottlieb CA, Budzko DB (1981) Antibody- independent, natural resistance of birds to Trypanosoma cruzi infection. J Parasitol 67: 656–660. doi: 10.2307/3280439
|
[54] | Gomes M, Galvao , L , Macedo , A , Pena S, Chiari E (1999) Chagas'disease diagnosis: comparative analysis of parasitologic, molecular and serologic methods. Am J Trop Med Hyg 60(2): 205–210.
|
[55] | Kirchhoff L, Votava JR, Ochs DE, Moser DR (1996) Comparison of PCR and microscopic methods for detecting Trypanosoma cruzi. J Clin Microbiol 34(5): 1171–1175.
|
[56] | McVey M, Lee SE (2008) MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet 4(11): 529–538. doi: 10.1016/j.tig.2008.08.007
|
[57] | Xing Z, Cardona CJ, Anunciacion J, Adams S, Dao N (2010) Roles of the ERK MAPK in the regulation of proinflammatory and apoptotic responses in chicken macrophages infected with H9N2 avian influenza virus. J Gen Virol 91(2): 343–351. doi: 10.1099/vir.0.015578-0
|
[58] | Kim HB, Evans I, Smallwood R, Holcombe M, Qwarnstrom EE (2010) NIK and IKKbeta interdependence in NF-kappaB signalling–flux analysis of regulation through metabolites. Biosystems 99(2): 140–149. doi: 10.1016/j.biosystems.2009.10.009
|
[59] | Karakhanova S, Meisel S, Ring S, Mahnke K, Enk AH (2010) ERK/p38 MAP-kinases and PI3K are involved in the differential regulation of B7-H1 expression in DC subsets. Eur J Immunol 40(1): 254–266. doi: 10.1002/eji.200939289
|
[60] | Invernizzi P, Pasini S, Selmi C, Miozzo M, Podda M (2008) Skewing of X chromosome inactivation in autoimmunity. Autoimmunity 41(4): 272–277. doi: 10.1080/08916930802024574
|
[61] | Chen GL, Prchal JT (2007) X-linked clonality testing: interpretation and limitations. Blood 110(5): 1411–1419. doi: 10.1182/blood-2006-09-018655
|
[62] | Billingham RE, Medawar PB (1951) The Technique of Free Skin Grafting in Mammals. Journal of Experimental Biology 28: 385–402.
|
[63] | Billingham RE, Brent L, Medawar PB (1953) Actively acquired tolerance of foreign cells. Nature 172: 603–606. doi: 10.1038/172603a0
|
[64] | Burnet FM, Stone JD, Edney M (1950) The failure of antibody production in the chick embryo. Aust J Exp Biol Med Sci 28(3): 291–297. doi: 10.1038/icb.1950.29
|
[65] | Burnet FM (1961) Immunological recognition of self. Science 133: 307–311. doi: 10.1126/science.133.3449.307
|
[66] | Burnet M (1970) Immunological Surveillance. London: Pergamon Press.
|
[67] | Afzali B, Lombardi G, Lechler RI, Lord GM (2007) The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin Exp Immunol 148: 32–46. doi: 10.1111/j.1365-2249.2007.03356.x
|
[68] | Bluestone JA, Mackay CR, O'Shea JJ, Stockinger B (2009) The functional plasticity of T cell subsets. Nat Rev Immunol 9: 811–816. doi: 10.1038/nri2654
|
[69] | Chen Z, O'Shea JJ (2008) Regulation of IL-17 production in human lymphocytes. Cytokine 41(2): 71–78. doi: 10.1016/j.cyto.2007.09.009
|
[70] | Mariano FS, Gutierrez FR, Pavanelli WR, Milanezi CM, Cavassani KA, et al. (2008) The involvement of CD4+CD25+ T cells in the acute phase of Trypanosoma cruzi infection. Microbes Infect 10(7): 825–833. doi: 10.1016/j.micinf.2008.04.009
|
[71] | Da Matta Guedes PM, Gutierrez FR, Maia FL, Milanezi CM, Silva GK, et al. (2010) IL-17 produced during Trypanosoma cruzi infection plays a central role in regulating parasite induced myocarditis. PLoS Negl Trop Dis 4(2): e604. doi: 10.1371/journal.pntd.0000604
|
[72] | Feng J, Yan J, Buzin CH, Towbin JA, Sommer SS (2002) Mutations in the dystrophin gene are associated with sporadic dilated cardiomyopathy. Mol Genet Metab 77(1-2): 119–126. doi: 10.1016/S1096-7192(02)00153-1
|
[73] | Finsterer J, St?llberger C (2003) The heart in human dystrophinopathies. Cardiology 99(1): 1–19. doi: 68446
|
[74] | Spivak JL (2004) The chronic myeloproliferative disorders: clonality and clinical heterogeneity. Semin Hematol 41: 2 suppl 31–5. doi: 10.1053/j.seminhematol.2004.02.011
|
[75] | Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, et al. (2009) Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. Science 326(5950): 289–293. doi: 10.1126/science.1181369
|
[76] | Kimura M (1983) The neutral theory of molecular evolution. Cambridge: Cambridge University Press. 367 p.
|
[77] | Teixeira ARL, Santos-Buch CA (1974) The immunology of experimental Chagas' disease. I. Preparation of Trypanosoma cruzi antigens and humoral antibody response to these antigens. J Immunol 113(3): 859–869.
|
[78] | Teixeira ARL, Santos-Buch CA (1975) The immunology of experimental Chagas' disease. II. Delayed hypersensitivity to Trypanosoma cruzi antigens. Immunology 28(3): 401–410.
|
[79] | Teixeira AR, Teixeira ML, Santos-Buch CA (1975) The immunology of experimental Chagas' disease. IV. Production of lesions in rabbits similar to those of chronic Chagas' disease in man. Am J Pathol 80(1): 163–180.
|
[80] | Dos Reis FC, Smith BO, Santos CC, Costa TF, Scharfstein J, et al. (2008) The role of conserved residues of chagasin in the inhibition of cysteine peptidases. FEBS Lett 582: 485–490. doi: 10.1016/j.febslet.2008.01.008
|
[81] | Ribeiro CH, López NC, Ramírez GA, Valck CE, Molina MC, et al. (2009) Trypanosoma cruzi calreticulin: a possible role in Chagas' disease autoimmunity. Mol Immunol 46: 1092–1099. doi: 10.1016/j.molimm.2008.10.034
|
[82] | Gironès N, Carrasco-Marin E, Cuervo H, Guerrero NA, Sanoja C, et al. (2007) Role of Trypanosoma cruzi autoreactive T cells in the generation of cardiac pathology. Ann N Y Acad Sci 1107: 434–444. doi: 10.1196/annals.1381.046
|
[83] | Pellegrini A, Gui?azú N, Aoki MP, Calero IC, Carrera-Silva EA, et al. (2007) Spleen B cells from BALB/c are more prone to activation than spleen B cells from C57BL/6 mice during a secondary immune response to cruzipain. Int Immunol 19(12): 1395–1402. doi: 10.1093/intimm/dxm107
|
[84] | Felix JC, Von Kreuter BF, Santos-Buch CA (1993) Mimicry of heart cell surface epitopes in primary anti-Trypanosoma cruzi Lyt 2+ T lymphocytes. Clin Immunol Immunopathol 68(2): 141–146. doi: 10.1006/clin.1993.1110
|
[85] | Cunha-Neto E, Duranti M, Gruber A, Zingales B, De Messias I, et al. (1995) Autoimmunity in Chagas disease cardiopathy: biological relevance of a cardiac myosin-specific epitope crossreactive to an immunodominant Trypanosoma cruzi antigen. Proc Natl Acad Sci USA 92(8): 3541–3545. doi: 10.1073/pnas.92.8.3541
|
[86] | Abel LC, Iwai LK, Viviani W, Bilate AM, Faé KC, et al. (2005) T cell epitope characterization in tandemly repetitive Trypanosoma cruzi B13 protein. Microbes Infect 7(11-12): 1184–1195. doi: 10.1016/j.micinf.2005.03.033
|
[87] | Cunha-Neto E, Bilate AM, Hyland KV, Fonseca SG, Kalil J, et al. (2006) Induction of cardiac autoimmunity in Chagas heart disease: a case for molecular mimicry. Autoimmunity 39(1): 41–54. doi: 10.1080/08916930500485002
|
[88] | Iwai LK, Juliano MA, Juliano L, Kalil J, Cunha-Neto E (2005) T-cell molecular mimicry in Chagas disease: identification and partial structural analysis of multiple cross-reactive epitopes between Trypanosoma cruzi B13 and cardiac myosin heavy chain. J Autoimmun 24(2): 111–117. doi: 10.1016/j.jaut.2005.01.006
|
[89] | Gironès N, Cuervo H, Fresno M (2005) Trypanosoma cruzi-induced molecular mimicry and Chagas' disease. Curr Top Microbiol Immunol 296: 89–123. doi: 10.1007/3-540-30791-5_6
|
[90] | Goronzy JJ, Weyand CM (2009) Developments in the scientific understanding of rheumatoid arthritis. Arthritis Res Ther 11(5): 249. doi: 10.1186/ar2758
|
[91] | Cihakova D, Rose NR (2008) Pathogenesis of myocarditis and dilated cardiomyopathy. Adv Immunol 99: 95–114. doi: 10.1016/S0065-2776(08)00604-4
|
[92] | Kivity S, Agmon-Levin N, Blank M, Shoenfeld Y (2009) Infections and autoimmunity-friends or foes? Trends Immunol 30(8): 409–414. doi: 10.1016/j.it.2009.05.005
|
[93] | Leon JS, Wang K, Engman DM (2003) Myosin autoimmunity is not essential for cardiac inflammation in acute Chagas' disease. J Immunol 171(8): 4271–4277.
|
[94] | Leon JS, Daniels MD, Toriello KM, Wang K, Engman DM (2004) A cardiac myosin-specific autoimmune response is induced by immunization with Trypanosoma cruzi proteins. Infect Immun 72(6): 3410–3417. doi: 10.1128/IAI.72.6.3410-3417.2004
|
[95] | Leon JS, Godsel LM, Wang K, Engman DM (2001) Cardiac myosin autoimmunity in acute Chagas' heart disease. Infect Immun 69: 5643–5649. doi: 10.1128/IAI.69.9.5643-5649.2001
|
[96] | Dias E, Laranja FS, Miranda A, Nobrega G (1956) Chagas' disease; a clinical, epidemiologic, and pathologic study. Circulation 14(6): 1035–1060. doi: 10.1161/01.CIR.14.6.1035
|
[97] | Burnet M (1972) Auto-immunity and auto-immune disease. Philadelphia: F.A. Davis Company.
|
[98] | Portig I, Wilke A, Freyland M, Wolf MJ, Richter A, et al. (2006) Familial inflammatory dilated cardiomyopathy. Eur J Heart Fail 8(88): 816–825. doi: 10.1016/j.ejheart.2006.02.010
|
[99] | Sfriso P, Ghirardello A, Botsios C, Tonon M, Zen M, et al. (2010) Infections and autoimmunity: the multifaceted relationship. J. Leukoc. Biol 87: 385–95.
|
[100] | Obler D, Wu BL, Lip V, Estrella E, Keck S, et al. (2010) Familial dilated cardiomyopathy secondary to dystrophin splice site mutation. J Card Fail 16(3): 194–199. doi: 10.1016/j.cardfail.2009.11.009
|
[101] | Maisch B, Richter A, Sandm?ller A, Portig I, Pankuweit S (2005) Inflammatory Dilated Cardiomyopathy (DCMI). Herz 30(6): 535–544. doi: 10.1007/s00059-005-2730-5
|
[102] | Pankuweit S, Richter A, Ruppert V, Maisch B (2009) Familial predisposition and microbial etiology in dilated cardiomyopathy. Herz 34(2): 110–116. doi: 10.1007/s00059-009-3200-2
|