全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Polyandry Is a Common Event in Wild Populations of the Tsetse Fly Glossina fuscipes fuscipes and May Impact Population Reduction Measures

DOI: 10.1371/journal.pntd.0001190

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Glossina fuscipes fuscipes is the main vector of human and animal trypanosomiasis in Africa, particularly in Uganda. Attempts to control/eradicate this species using biological methods require knowledge of its reproductive biology. An important aspect is the number of times a female mates in the wild as this influences the effective population size and may constitute a critical factor in determining the success of control methods. To date, polyandry in G.f. fuscipes has not been investigated in the laboratory or in the wild. Interest in assessing the presence of remating in Ugandan populations is driven by the fact that eradication of this species is at the planning stage in this country. Methodology/Principal Findings Two well established populations, Kabukanga in the West and Buvuma Island in Lake Victoria, were sampled to assess the presence and frequency of female remating. Six informative microsatellite loci were used to estimate the number of matings per female by genotyping sperm preserved in the female spermathecae. The direct count of the minimum number of males that transferred sperm to the spermathecae was compared to Maximum Likelihood and Bayesian probability estimates. The three estimates provided evidence that remating is common in the populations but the frequency is substantially different: 57% in Kabukanga and 33% in Buvuma. Conclusions/Significance The presence of remating, with females maintaining sperm from different mates, may constitute a critical factor in cases of re-infestation of cleared areas and/or of residual populations. Remating may enhance the reproductive potential of re-invading propagules in terms of their effective population size. We suggest that population age structure may influence remating frequency. Considering the seasonal demographic changes that this fly undergoes during the dry and wet seasons, control programmes based on SIT should release large numbers of sterile males, even in residual surviving target populations, in the dry season.

References

[1]  Schofield CJ, Kabayo JP (2008) Trypanosomiasis vector control in Africa and Latin America. Parasites & Vectors 1: 24. doi: 10.1186/1756-3305-1-24
[2]  Hutchinson OC, Fèvre EM, Carrington M, Welburn SC (2003) Lessons learned from the emergence of a new Trypanosoma brucei rhodesiense sleeping sickness focus in Uganda. Lancet Infect Dis 3: 42–45. doi: 10.1016/S1473-3099(03)00488-2
[3]  Kioy D, Jannin J, Mattock N (2004) Human African trypanosomiasis. Nat Rev Microbiol 2: 186–187. doi: 10.1038/nrmicro852
[4]  Aksoy S (2003) Control of tsetse flies and trypanosomes using molecular genetics. Vet Parasitol 115: 125–145. doi: 10.1016/S0304-4017(03)00203-6
[5]  http://www.africa-union.org/Structure_of?_the_Commission/depPattec.htm. Accessed 2011 May 13.
[6]  Dumas M, Bisser S (1999) Clinical aspects of human African trypanosomiasis. In: Dumas M, Bouteille B, Buguet A, editors. Progress in Human African Trypanosomiasis, Sleeping Sickness. Paris: Springer. pp. 215–233.
[7]  Abila PP, Slotman MA, Parmakelis A, Dion K, Robinson AS, et al. (2008) High levels of genetic differentiation between Ugandan Glossina fuscipes fuscipes populations separated by Lake Kyoga. PLoS Neglect Trop D 2: e242. doi: 10.1371/journal.pntd.0000242
[8]  Beadell JS, Hyseni C, Abila PP, Azabo R, Enyaru JCK, et al. (2010) Phylogeography and population structure of Glossina fuscipes fuscipes in Uganda: implications for control of tsetse. PLoS Neglect Trop D 4: e636. doi: 10.1371/journal.pntd.0000636
[9]  Krafsur ES (2009) Tsetse flies: genetics, evolution and role as vectors. Infect Genet Evol 9: 124–141. doi: 10.1016/j.meegid.2008.09.010
[10]  Curtis CF (1968) A possible genetic method for the control of insect pests, with special reference to tsetse flies (Glossina spp.). Bull Entomol Res 57: 509–523. doi: 10.1017/S000748530005286X
[11]  Dame DA, Mackenzie PK (1968) Transmission of Trypanosoma congolense by chemosterilized male Glossina morsitans. Ann Trop Med Parasitol 62: 372–374.
[12]  Abila PP, Kiendrebeogo M, Mutika GN, Parker AG, Robinson AS (2003) The effect of age on mating competitiveness of male Glossina fuscipes fuscipes and Glossina palpalis palpalis. J Insect Sci 3: 13. doi: 10.1017/s1742758400013904
[13]  Simmons LW (2001) Sperm competition and its evolutionary consequences in the insects. Princeton University Press, Princeton, NJ.
[14]  Bonizzoni MB, Katsoyannos I, Marguerie R, Guglielmino CR, Malacrida AR, et al. (2002) Microsatellite analysis reveals remating by wild Mediterranean fruitfly females, Ceratitis capitata. Mol Ecol 11: 1915–1921. doi: 10.1046/j.1365-294X.2002.01602.x
[15]  Bretman A, Tregenza T (2005) Measuring polyandry in wild populations: a case study using promiscuous crickets. Mol Ecol 14: 2167–2179. doi: 10.1111/j.1365-294x.2005.02556.x
[16]  Tripet F, Touré YT, Dolo G, Lanzaro GC (2003) Frequency of multiple inseminations in field-collected Anopheles gambiae females revealed by DNA analysis of transferred sperm. Am J Trop Med Hyg 68: 1–5.
[17]  Haddrill PR, Shuker DM, Amos W, Majerus ME, Mayes S (2008) Female multiple mating in wild and laboratory populations of the two-spot ladybird, Adalia bipunctata. Mol Ecol 17: 3189–3197. doi: 10.1111/j.1365-294X.2008.03812.x
[18]  Leak SGA, Ejigu D, Vreysen MJB (2008) Collection of entomological baseline data for tsetse area-wide integrated pest management programmes. Rome: FAO Animal Production and Heaith 1. 205 p.
[19]  Tripet F, Touré YT, Taylor CE, Norris DE, Dolo G, et al. (2001) DNA analysis of transferred sperm reveals significant levels of gene flow between molecular forms of Anopheles gambiae. Mol Ecol 10: 1725–1732. doi: 10.1046/j.0962-1083.2001.01301.x
[20]  Baruffi L, Damiani G, Guglielmino CR, Bandi C, Malacrida AR, et al. (1995) Polymorphism within and between populations of Ceratitis capitata: comparison between RAPD and multilocus enzyme electrophoresis data. Heredity 74: 425–427. doi: 10.1038/hdy.1995.60
[21]  Brown JE, Komatsu KJ, Abila PP, Robinson AS, Okedi LM, et al. (2008) Polymorphic microsatellite markers for the tsetse fly Glossina fuscipes fuscipes (Diptera: Glossinidae), a vector of human African trypanosomiasis. Mol Ecol Res 8: 1506–1508. doi: 10.1111/j.1755-0998.2008.02328.x
[22]  Willhoeft U (1997) Fluorescence in situ hybridization of ribosomal DNA to mitotic chromosomes of tsetse flies (Diptera: Glossinidae: Glossina). Chromosome Res 5: 262–267. doi: 10.1023/A:1018471620542
[23]  Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7: 639–655. doi: 10.1046/j.1365-294x.1998.00374.x
[24]  Rousset F (2008) Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Res 8: 103–106. doi: 10.1111/j.1471-8286.2007.01931.x
[25]  Rice WR (1989) Analysis tables of statistical tests. Evolution 43: 223–225. doi: 10.2307/2409177
[26]  Brookfield JFK (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5: 453–455. doi: 10.1111/j.1365-294x.1996.tb00336.x
[27]  Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4: 535–538. doi: 10.1111/j.1471-8286.2004.00684.x
[28]  Dieringer D, Schl?tterer C (2003) Microsatellite analyser (msa): a platform independent analysis tool for a large microsatellite data sets. Mol Ecol Notes 3: 167–169. doi: 10.1046/j.1471-8286.2003.00351.x
[29]  Weir BS, Cockerham CC (1984) Estimating of F-statistics for the analysis of population structure. Evolution 38: 1358–1370. doi: 10.2307/2408641
[30]  Gertsch PJ, Fjerdingstad EJ (1997) Biased amplification and the utility of spermatheca-PCR for mating frequency studies in Hymenoptera. Hereditas 126: 183–186. doi: 10.1111/j.1601-5223.1997.00183.x
[31]  Chapuisat M (1998) Mating frequency of ant queens with alternative dispersal strategies, as revealed by microsatellite analysis of sperm. Mol Ecol 7: 1097–1105. doi: 10.1046/j.1365-294x.1998.00422.x
[32]  Avise JC (1994) Molecular markers, natural history and evolution. NY: Chapman and Hall. 511 p.
[33]  Pamilo P (1993) Polyandry and allele frequency differences between the sexes in the ant Formica aquilonia. Heredity 70: 472–480. doi: 10.1038/hdy.1993.69
[34]  Boomsma JJ, Ratnieks FLW (1996) Paternity in eusocial Hymenoptera. Phil Trans R Soc Lond B 351: 947–975. doi: 10.1098/rstb.1996.0087
[35]  Longford NT (2007) Studying Human Populations. An Advanced Course in Statistics. NY: Springer, New York.
[36]  Freedman DA (2005) Statistical models: theory and practice. NY: Cambridge University Press.
[37]  Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian Data Analysis. NY: Chapman and Hall/CRC.
[38]  Solano P, Kaba D, Ravel S, Dyer N, Sall B, et al. (2010) Tsetse population genetics as a tool to choose between suppression and elimination: the case of the Niayes area in Senegal. PLoS Negl Trop Dis 4: e692. doi: 10.1371/journal.pntd.0000692
[39]  Buxton PA (1955) The natural history of tsetse flies. London School of Hygiene and Tropical Medicine, Memoir No. 10. London: H. K. Lewis & Co. Ltd.
[40]  Brice?o RD, Eberhard WG (2009) Experimental demonstration of possible cryptic female choice on male tsetse fly genitalia. J Insect Physiol 55: 989–996. doi: 10.1016/j.jinsphys.2009.07.001
[41]  Saunders DS, Dodd CHW (1972) Mating, insemination, and ovulation in the tsetse fly, Glossina morsitans. Journal of Insect Physiology 18: 187–198. doi: 10.1016/0022-1910(72)90119-9
[42]  Pizzari T, Birkhead TR (2000) Female feral fowl eject sperm of subdominant males. Nature 405: 787–789. doi: 10.1038/35015558
[43]  Birkhead TR, Pizzari T (2002) Postcopulatory sexual selection. Nat Rev Genet 3: 262–273. doi: 10.1038/nrg774
[44]  Bretman A, Newcombe D, Tregenza T (2009) Promiscuous females avoid inbreeding by controlling sperm storage. Mol Ecol 18: 3340–3345. doi: 10.1111/j.1365-294X.2009.04301.x
[45]  Snook RR, Hosken DJ (2004) Sperm death and dumping in Drosophila. Nature 428: 939–941. doi: 10.1038/nature02455
[46]  Pollock ME (1982) Descriptions and keys for identification of Glossina species. Training Manual for tsetse Control personnel. Volume 1. FAO. pp. 156–201.
[47]  Hargrove JW (2004) Tsetse populations dynamics. In: Maudlin I, Holmes PH, Miles MA, editors. The Trypanosomiases. Wallingford: CABI. pp. 113–137.
[48]  Katunguka-Rwakishaya E, Kabagambe EK (1996) Tsetse survey in Mukono district, south-east Uganda: population structure, distribution and blood meal status. Trop Anim Health Prod 28: 151–157. doi: 10.1007/BF03030837
[49]  Van den Bossche P, De Deken R (2002) Seasonal variations in the distribution and abundance of the tsetse fly, Glossina morsitans morsitans in eastern Zambia. Med Vet Entomol 16: 170–6. doi: 10.1046/j.1365-2915.2002.00360.x
[50]  Williams B, Brightwell R, Dransfield R (1990) Monitoring tsetse fly populations.:II. The effect of climate on trap catches of Glossina pallidipes. Med Vet Entomol 4: 181–193. doi: 10.1111/j.1365-2915.1990.tb00276.x
[51]  Brightwell R, Dransfield RD, Stevenson P, Williams B (1997) Changes over twelve years in populations of Glossina pallidipes and Glossina longipennis (Diptera: Glossinidae) subject to varying trapping pressure at Nguruman, south-west Kenya. Bull Entomol Research 87: 349–370. doi: 10.1017/s0007485300025980
[52]  Olet PA, Opiyo E, Robinson AS (2002) Sexual receptivity and age in Glossina pallidipes Austen (Dipt., Glossinidae. J Appl Ent 126: 86–91. doi: 10.1046/j.1439-0418.2002.00616.x
[53]  Tobe SS, Langley PA (1978) Reproductive physiology of Glossina. Ann Rev Entomol 23: 283–307. doi: 10.1146/annurev.en.23.010178.001435
[54]  Champion de Crespigny FE, Hurst LD, Wedell N (2008) Do Wolbachia–associated incompatibilities promote polyandry? Evolution 62: 107–22. doi: 10.1111/j.1558-5646.2007.00274.x
[55]  Aksoy S, Maudlin I, Dale C, Robinson A, O'Neill S (2001) Prospects for control of African trypanosomiasis by tsetse vector manipulation. Trends in Parasitology 17: 29–35. doi: 10.1016/S1471-4922(00)01850-X

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133