The targeting of parasite cysteine proteases with small molecules is emerging as a possible approach to treat tropical parasitic diseases such as sleeping sickness, Chagas' disease, and malaria. The homology of parasite cysteine proteases to the human cathepsins suggests that inhibitors originally developed for the latter may be a source of promising lead compounds for the former. We describe here the screening of a unique ~2,100-member cathepsin inhibitor library against five parasite cysteine proteases thought to be relevant in tropical parasitic diseases. Compounds active against parasite enzymes were subsequently screened against cultured Plasmodium falciparum, Trypanosoma brucei brucei and/or Trypanosoma cruzi parasites and evaluated for cytotoxicity to mammalian cells. The end products of this effort include the identification of sub-micromolar cell-active leads as well as the elucidation of structure-activity trends that can guide further optimization efforts.
References
[1]
Frearson JA, Wyatt PG, Gilbert IH, Fairlamb AH (2007) Target assessment for antiparasitic drug discovery. Trends in Parasitology 23: 589–595. doi: 10.1016/j.pt.2007.08.019
[2]
Rosenthal PJ (2003) Antimalarial drug discovery: old and new approaches. Journal of Experimental Biology 206: 3735–3744. doi: 10.1242/jeb.00589
[3]
Renslo AR, McKerrow JH (2006) Drug discovery and development for neglected parasitic diseases. Nat Chem Biol 2: 701–710. doi: 10.1038/nchembio837
[4]
Bathurst I, Hentschel C (2006) Medicines for Malaria Venture: sustaining antimalarial drug development. Trends Parasitol 22: 301–307. doi: 10.1016/j.pt.2006.05.011
[5]
Castro JA, de Mecca MM, Bartel LC (2006) Toxic side effects of drugs used to treat Chagas' disease (American trypanosomiasis). Hum Exp Toxicol 25: 471–479. doi: 10.1191/0960327106het653oa
[6]
Pepin J, Milord F, Khonde AN, Niyonsenga T, Loko L, et al. (1995) Risk factors for encephalopathy and mortality during melarsoprol treatment of Trypanosoma brucei gambiense sleeping sickness. Trans R Soc Trop Med Hyg 89: 92–97. doi: 10.1016/0035-9203(95)90673-8
[7]
Ridley RG, Hudson AT (1998) Chemotherapy of malaria. Current Opinion in Infectious Diseases 11: 691–705. doi: 10.1097/00001432-199812000-00008
[8]
Krishna S, Woodrow CJ, Staines HM, Haynes RK, Mercereau-Puijalon O (2006) Re-evaluation of how artemisinins work in light of emerging evidence of in vitro resistance. Trends in Molecular Medicine 12: 200–205. doi: 10.1016/j.molmed.2006.03.005
[9]
Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, et al. (2008) Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 359: 2619–2620. doi: 10.1056/NEJMc0805011
[10]
Sajid M, McKerrow JH (2002) Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 120: 1–21. doi: 10.1016/S0166-6851(01)00438-8
[11]
Rawlings ND, Barrett AJ, Bateman AMEROPS: the peptidase database. Nucleic Acids Res 38: D227–233. doi: 10.1093/nar/gkp971
[12]
McGrath ME, Eakin AE, Engel JC, McKerrow JH, Craik CS, et al. (1995) The crystal structure of cruzain: a therapeutic target for Chagas' disease. J Mol Biol 247: 251–259. doi: 10.1006/jmbi.1994.0137
[13]
Doyle PS, Zhou YM, Engel JC, McKerrow JH (2007) A cysteine protease inhibitor cures Chagas' disease in an immunodeficient-mouse model of infection. Antimicrob Agents Chemother 51: 3932–3939. doi: 10.1128/AAC.00436-07
[14]
Engel JC, Doyle PS, Palmer J, Hsieh I, Bainton DF, et al. (1998) Cysteine protease inhibitors alter Golgi complex ultrastructure and function in Trypanosoma cruzi. J Cell Sci 111(Pt 5): 597–606.
[15]
Engel JC, Doyle PS, Hsieh I, McKerrow JH (1998) Cysteine Protease Inhibitors Cure an Experimental Trypanosoma cruzi Infection. J Exp Med 188: 725–734. doi: 10.1084/jem.188.4.725
[16]
Abdulla MH, O'Brien T, Mackey ZB, Sajid M, Grab DJ, et al. (2008) RNA Interference of Trypanosoma brucei Cathepsin B and L Affects Disease Progression in a Mouse Model. PLoS Negl Trop Dis 2: e298. doi: 10.1371/journal.pntd.0000298
[17]
O'Brien TC, Mackey ZB, Fetter RD, Choe Y, O'Donoghue AJ, et al. (2008) A parasite cysteine protease is key to host protein degradation and iron acquisition. J Biol Chem 283: 28934–28943. doi: 10.1074/jbc.M805824200
[18]
Liu J, Istvan ES, Gluzman IY, Gross J, Goldberg DE (2006) Plasmodium falciparum ensures its amino acid supply with multiple acquisition pathways and redundant proteolytic enzyme systems. Proc Natl Acad Sci U S A 103: 8840–8845. doi: 10.1073/pnas.0601876103
[19]
Rosenthal PJ (2004) Cysteine proteases of malaria parasites. Int J Parasitol 34: 1489–1499. doi: 10.1016/j.ijpara.2004.10.003
[20]
Rosenthal PJ, McKerrow JH, Aikawa M, Nagasawa H, Leech JH (1988) A malarial cysteine proteinase is necessary for hemoglobin degradation by Plasmodium falciparum. J Clin Invest 82: 1560–1566. doi: 10.1172/JCI113766
[21]
Sijwali PS, Rosenthal PJ (2004) Gene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum. Proc Natl Acad Sci U S A 101: 4384–4389. doi: 10.1073/pnas.0307720101
[22]
Sijwali PS, Koo J, Singh N, Rosenthal PJ (2006) Gene disruptions demonstrate independent roles for the four falcipain cysteine proteases of Plasmodium falciparum. Mol Biochem Parasitol 150: 96–106. doi: 10.1016/j.molbiopara.2006.06.013
[23]
Batra S, Sabnis YA, Rosenthal PJ, Avery MA (2003) Structure-based approach to falcipain-2 inhibitors: synthesis and biological evaluation of 1,6,7-Trisubstituted dihydroisoquinolines and isoquinolines. Bioorganic & Medicinal Chemistry 11: 2293–2299. doi: 10.1016/S0968-0896(03)00117-2
[24]
Hans RH, Gut J, Rosenthal PJ, Chibale K (2010) Comparison of the antiplasmodial and falcipain-2 inhibitory activity of beta-amino alcohol thiolactone-chalcone and isatin-chalcone hybrids. Bioorg Med Chem Lett 20: 2234–2237. doi: 10.1016/j.bmcl.2010.02.017
[25]
Coteron JM, Catterick D, Castro J, Chaparro MJ, Diaz B, et al. (2010) Falcipain inhibitors: optimization studies of the 2-pyrimidinecarbonitrile lead series. J Med Chem 53: 6129–6152. doi: 10.1021/jm100556b
[26]
McKerrow JH, Engel JC, Caffrey CR (1999) Cysteine protease inhibitors as chemotherapy for parasitic infections. Bioorg Med Chem 7: 639–644. doi: 10.1016/S0968-0896(99)00008-5
[27]
Scory S, Caffrey CR, Stierhof YD, Ruppel A, Steverding D (1999) Trypanosoma brucei: killing of bloodstream forms in vitro and in vivo by the cysteine proteinase inhibitor Z-phe-ala-CHN2. Exp Parasitol 91: 327–333. doi: 10.1006/expr.1998.4381
[28]
Engel JC, Ang KK, Chen S, Arkin MR, McKerrow JH, et al. (2010) Image-based high-throughput drug screening targeting the intracellular stage of Trypanosoma cruzi, the agent of Chagas' disease. Antimicrob Agents Chemother 54: 3326–3334. doi: 10.1128/AAC.01777-09
[29]
Beaulieu C, Isabel E, Fortier A, Masse F, Mellon C, et al. (2010) Identification of potent and reversible cruzipain inhibitors for the treatment of Chagas disease. Bioorg Med Chem Lett 20: 7444–7449. doi: 10.1016/j.bmcl.2010.10.015
[30]
Palmer JT, Rasnick D, Klaus JL, Bromme D (1995) Vinyl sulfones as mechanism-based cysteine protease inhibitors. J Med Chem 38: 3193–3196. doi: 10.1021/jm00017a002
[31]
Palmer JT, Bryant C, Wang DX, Davis DE, Setti EL, et al. (2005) Design and synthesis of tri-ring P3 benzamide-containing aminonitriles as potent, selective, orally effective inhibitors of cathepsin K. J Med Chem 48: 7520–7534. doi: 10.1021/jm058198r
[32]
Palmer JT, Hirschbein BL, Cheung H, McCarter J, Janc JW, et al. (2006) Keto-1,3,4-oxadiazoles as cathepsin K inhibitors. Bioorg Med Chem Lett 16: 2909–2914. doi: 10.1016/j.bmcl.2006.03.001
[33]
Rydzewski RM, Bryant C, Oballa R, Wesolowski G, Rodan SB, et al. (2002) Peptidic 1-cyanopyrrolidines: synthesis and SAR of a series of potent, selective cathepsin inhibitors. Bioorg Med Chem 10: 3277–3284. doi: 10.1016/S0968-0896(02)00173-6
[34]
Rishton GM (2003) Nonleadlikeness and leadlikeness in biochemical screening. Drug Discov Today 8: 86–96. doi: 10.1016/S1359644602025722
[35]
Smith AJT, Zhang X, Leach AG, Houk KN (2009) Beyond Picomolar Affinities: Quantitative Aspects of Noncovalent and Covalent Binding of Drugs to Proteins. Journal of Medicinal Chemistry 52: 225–233. doi: 10.1021/jm800498e
[36]
Potashman MH, Duggan ME (2009) Covalent Modifiers: An Orthogonal Approach to Drug Design. Journal of Medicinal Chemistry 52: 1231–1246. doi: 10.1021/jm8008597
[37]
Ahmed NK, Martin LA, Watts LM, Palmer J, Thornburg L, et al. (1992) Peptidyl fluoromethyl ketones as inhibitors of cathepsin B. Implication for treatment of rheumatoid arthritis. Biochem Pharmacol 44: 1201–1207. doi: 10.1016/0006-2952(92)90385-V
[38]
Eakin AE, McGrath ME, McKerrow JH, Fletterick RJ, Craik CS (1993) Production of crystallizable cruzain, the major cysteine protease from Trypanosoma cruzi. J Biol Chem 268: 6115–6118.
[39]
Caffrey CR, Hansell E, Lucas KD, Brinen LS, Alvarez Hernandez A, et al. (2001) Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense. Mol Biochem Parasitol 118: 61–73. doi: 10.1016/S0166-6851(01)00368-1
[40]
Mallari JP, Shelat AA, Obrien T, Caffrey CR, Kosinski A, et al. (2008) Development of potent purine-derived nitrile inhibitors of the trypanosomal protease TbcatB. J Med Chem 51: 545–552. doi: 10.1021/jm070760l
[41]
Shenai BR, Sijwali PS, Singh A, Rosenthal PJ (2000) Characterization of native and recombinant falcipain-2, a principal trophozoite cysteine protease and essential hemoglobinase of Plasmodium falciparum. J Biol Chem 275: 29000–29010. doi: 10.1074/jbc.M004459200
[42]
Sijwali PS, Shenai BR, Gut J, Singh A, Rosenthal PJ (2001) Expression and characterization of the Plasmodium falciparum haemoglobinase falcipain-3. Biochem J 360: 481–489. doi: 10.1042/0264-6021:3600481
[43]
Greenbaum DC, Mackey Z, Hansell E, Doyle P, Gut J, et al. (2004) Synthesis and structure-activity relationships of parasiticidal thiosemicarbazone cysteine protease inhibitors against Plasmodium falciparum, Trypanosoma brucei, and Trypanosoma cruzi. J Med Chem 47: 3212–3219. doi: 10.1021/jm030549j
[44]
Hamilton CJ, Saravanamuthu A, Eggleston IM, Fairlamb AH (2003) Ellman's-reagent-mediated regeneration of trypanothione in situ: substrate-economical microplate and time-dependent inhibition assays for trypanothione reductase. Biochem J 369: 529–537. doi: 10.1042/BJ20021298
[45]
Mackey ZB, Baca AM, Mallari JP, Apsel B, Shelat A, et al. (2006) Discovery of trypanocidal compounds by whole cell HTS of Trypanosoma brucei. Chem Biol Drug Des 67: 355–363. doi: 10.1111/j.1747-0285.2006.00389.x
[46]
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews 23: 3–25. doi: 10.1016/s0169-409x(96)00423-1
[47]
Ramjee MK, Flinn NS, Pemberton TP, Quibell M, Wang Y, et al. (2006) Substrate mapping and inhibitor profiling of falcipain-2, falcipain-3 and berghepain-2: implications for peptidase anti-malarial drug discovery. Biochem J 399: 47–57. doi: 10.1042/BJ20060422
[48]
Shenai BR, Lee BJ, Alvarez-Hernandez A, Chong PY, Emal CD, et al. (2003) Structure-Activity Relationships for Inhibition of Cysteine Protease Activity and Development of Plasmodium falciparum by Peptidyl Vinyl Sulfones. Antimicrob Agents Chemother 47: 154–160. doi: 10.1128/AAC.47.1.154-160.2003
[49]
Gauthier JY, Chauret N, Cromlish W, Desmarais S, Duong le T, et al. (2008) The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg Med Chem Lett 18: 923–928. doi: 10.1016/j.bmcl.2007.12.047
[50]
Mallari JP, Shelat AA, Kosinski A, Caffrey CR, Connelly M, et al. (2009) Structure-guided development of selective TbcatB inhibitors. J Med Chem 52: 6489–6493. doi: 10.1021/jm900908p