全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evidence for a Peak Shift in a Humoral Response to Helminths: Age Profiles of IgE in the Shuar of Ecuador, the Tsimane of Bolivia, and the U.S. NHANES

DOI: 10.1371/journal.pntd.0001218

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The peak shift model predicts that the age-profile of a pathogen's prevalence depends upon its transmission rate, peaking earlier in populations with higher transmission and declining as partial immunity is acquired. Helminth infections are associated with increased immunoglobulin E (IgE), which may convey partial immunity and influence the peak shift. Although studies have noted peak shifts in helminths, corresponding peak shifts in total IgE have not been investigated, nor has the age-patterning been carefully examined across populations. We test for differences in the age-patterning of IgE between two South American forager-horticulturalist populations and the United States: the Tsimane of Bolivia (n = 832), the Shuar of Ecuador (n = 289), and the U.S. NHANES (n = 8,336). We then examine the relationship between total IgE and helminth prevalences in the Tsimane. Methodology/Principal Findings Total IgE levels were assessed in serum and dried blood spots and age-patterns examined with non-linear regression models. Tsimane had the highest IgE (geometric mean = 8,182 IU/ml), followed by Shuar (1,252 IU/ml), and NHANES (52 IU/ml). Consistent with predictions, higher population IgE was associated with steeper increases at early ages and earlier peaks: Tsimane IgE peaked at 7 years, Shuar at 10 years, and NHANES at 17 years. For Tsimane, the age-pattern was compared with fecal helminth prevalences. Overall, 57% had detectable eggs or larva, with hookworm (45.4%) and Ascaris lumbricoides (19.9%) the most prevalent. The peak in total IgE occurred around the peak in A. lumbricoides, which was associated with higher IgE in children <10, but with lower IgE in adolescents. Conclusions The age-patterning suggests a peak shift in total IgE similar to that seen in helminth infections, particularly A. lumbricoides. This age-patterning may have implications for understanding the effects of helminths on other health outcomes, such as allergy, growth, and response to childhood vaccination.

References

[1]  Woolhouse M (1998) Patterns in Parasite Epidemiology: The Peak Shift. Parasitol Today 14: 428–434. doi:10.1016/S0169-4758(98)01318-0.
[2]  Anderson RM, May RM (1985) Herd immunity to helminth infection and implications for parasite control. Nature 315: 493–496. doi:10.1038/315493a0.
[3]  Wahyuni S, Sartono E, Supali T, Zee JS van der, Mangali A, et al. (2005) Clustering of allergic outcomes within families and households in areas endemic for helminth infections. Int Arch Allergy and Immunol 136: 356–364. doi: 10.1159/000084255
[4]  Faulkner H, Turner J, Kamgno J, Pion SD, Boussinesq M, et al. (2002) Age-and infection intensity-dependent cytokine and antibody production in human trichuriasis: the importance of IgE. J Infect Dis 185: 665–672. doi:10.1086/339005.
[5]  Hurtado AM, Frey M, Hill K, Hurtado I, Baker J (2008) The role of helminthes in human evolution: Implications for global health in the 21st century. In: Elton S, O'Higgins P, editors. Medicine and evolution: current applications, future prospects. Boca Raton, FL:Taylor and Francis Group. pp. 153–180.
[6]  Mutapi F, Ndhlovu PD, Hagan P, Woolhouse MEJ (1997) A comparison of humoral responses to Schistosoma haematobium in areas with low and high levels of infection. Parasite Immunol 19: 255–263. doi:10.1046/j.1365-3024.1997.d01-206.x.
[7]  Needham CS, Lillywhite JE, Didier JM, Bianco AE, Bundy DAP (1993) Age-dependency of serum isotype responses and antigen recognition in human whipworm (Trichuris trichiura) infection. Parasite Immunology 15: 683–692. doi:10.1111/j.1365-3024.1993.tb00583.x.
[8]  Faulkner H, Turner J, Kamgno J, Pion SD, Boussinesq M, et al. (2002) Age- and infection intensity-dependent cytokine and antibody production in human trichuriasis: the importance of IgE. J Infect Dis 185: 665–72. doi:10.1086/339005.
[9]  Ndhlovu P, Cadman H, Vennervald BJ, Christensen NO, Chidimu M, et al. (1996) Age-related antibody profiles in Schistosoma haematobium infections in a rural community in Zimbabwe. Parasite Immunol 18: 181–91. doi: 10.1046/j.1365-3024.1996.d01-78.x
[10]  Hagan P, Blumenthal UJ, Dunn D, Simpson AJ, Wilkins HA (1991) Human IgE, IgG4 and resistance to reinfection with Schistosoma haematobium. Nature 349: 243–5. doi:10.1038/349243a0.
[11]  Bundy D a, Lillywhite JE, Didier JM, Simmons I, Bianco a E (1991) Age-dependency of infection status and serum antibody levels in human whipworm (Trichuris trichiura) infection. Parasite Immunol 13: 629–38. doi: 10.1111/j.1365-3024.1991.tb00558.x
[12]  Cooper PJ, Alexander N, Moncayo A-L, Benitez SM, Chico ME, et al. (2008) Environmental determinants of total IgE among school children living in the rural Tropics: importance of geohelminth infections and effect of anthelmintic treatment. BMC Immunol 9: 33. doi:10.1186/1471-2172-9-33.
[13]  Hagel I, Lynch NR, Prisco MC, Rojas E, Pérez M, et al. (2008) Ascaris reinfection of slum children: relation with the IgE response. Clin Exp Immunol 94: 80–83. doi:10.1111/j.1365-2249.1993.tb05981.x.
[14]  Hagel I, Cabrera M, Sánchez P, Rodríguez P, Lattouf JJ (2006) Role of the low affinity IgE receptor (CD23) on the IgE response against Ascaris lumbricoides in Warao Amerindian children from Venezuela. Investigación Clínica 47: 241–51.
[15]  Iancovici Kidon M, Stein M, Geller-Bernstein C, Weisman Z, Steinberg S, et al. (2005) Serum immunoglobulin E levels in Israeli-Ethiopian children: environment and genetics. Isr Med Assoc J 7: 799–802.
[16]  Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol 11: 317–321. doi:10.1016/0169-5347(96)10039-2.
[17]  Lochmiller RL, Deerenberg C (2000) Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88: 87–98. doi:10.1034/j.1600-0706.2000.880110.x.
[18]  Blackwell AD, Snodgrass JJ, Madimenos FC, Sugiyama LS (2010) Life history, immune function, and intestinal helminths: Trade-offs among immunoglobulin E, C-reactive protein, and growth in an Amazonian population. Am J Hum Biol 22: 836–48. doi:10.1002/ajhb.21092.
[19]  Elias D, Britton S, Aseffa A, Engers H, Akuffo H (2008) Poor immunogenicity of BCG in helminth infected population is associated with increased in vitro TGF-beta production. Vaccine 26: 3897–3902. doi:10.1016/j.vaccine.2008.04.083.
[20]  Hurtado AM, Hurtado I, Hill K (2004) Public health and adaptive immunity among natives of South America. In: Salzano FM, Hurtado AM, editors. Lost paradises and the ethics of research and publication. New York. p: Oxford University Press. pp. 164–90.
[21]  Riet E van, Adegnika AA, Retra K, Vieira R, Tielens AGM, et al. (2007) Cellular and humoral responses to influenza in gabonese children living in rural and semi-urban areas. Journal Infect Dis 196: 1671–8. doi:10.1086/522010.
[22]  Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, et al. (2008) Helminth infections: the great neglected tropical diseases. J Clin Invest 118: 1311–1321. doi:10.1172/JCI34261.
[23]  Johnson CC, Peterson EL, Ownby DR (1998) Gender differences in total and allergen-specific immunoglobulin E (IgE) concentrations in a population-based cohort from birth to age four years. Am J Epidemiol 147: 1145–52. doi: 10.1093/oxfordjournals.aje.a009413
[24]  Lindberg R, Arroyave C (1986) Levels of IgE in serum from normal children and allergic children as measured by an enzyme immunoassay. J Allergy Clin Immunol 78: 614–618. doi:10.1016/0091-6749(86)90078-3.
[25]  Descola P (1996) The spears of twilight: life and death in the Amazon jungle. New York: New Press. 458 p.
[26]  Harner MJ (1984) The Jívaro, people of the sacred waterfalls. University of California Press. Berkeley. xx, 233 p., [18] p. of plates p.
[27]  Blackwell AD, Pryor G III, Pozo J, Tiwia W, Sugiyama LS (2009) Growth and market integration in Amazonia: A comparison of growth indicators between Shuar, Shiwiar, and nonindigenous school children. Am J Hum Biol 21: 161–171. doi:10.1002/ajhb.20838.
[28]  Sackey ME, Weigel MM, Armijos RX (2003) Predictors and nutritional consequences of intestinal parasitic infections in rural Ecuadorian children. J Trop Pediatrics 49: 17–23. doi:10.1093/tropej/49.1.17.
[29]  San Sebastian M, Santi S (2000) Control of intestinal helminths in schoolchildren in Low-Napo, Ecuador: impact of a two-year chemotherapy program. Revista da Sociedade Brasileira de Medicina Tropical 33: 69–73. doi: 10.1590/S0037-86822000000100010
[30]  Gurven M, Kaplan H, Winking J, Eid Rodriguez D, Vasunilashorn S, et al. (2009) Inflammation and infection do not promote arterial aging and cardiovascular disease risk factors among lean horticulturalists. PLoS ONE 4: e6590. doi:10.1371/journal.pone.0006590.
[31]  Gurven M, Kaplan H, Winking J, Finch C, Crimmins EM (2008) Aging and inflammation in two epidemiological worlds. J Gerontol A Biol Sci Med Sci 2008 63 63: 196–199.
[32]  McDade TW, Leonard WR, Burhop J, Reyes-Garciá V, Vadez V, et al. (2005) Predictors of C-reactive protein in Tsimane' 2 to 15 year-olds in lowland Bolivia. Am J Phys Anthropol 128: 906–913. doi:10.1002/ajpa.20222.
[33]  Vasunilashorn S, Crimmins EM, Kim JK, Winking J, Gurven M, et al. (2010) Blood lipids, infection, and inflammatory markers in the Tsimane of Bolivia. Am J Hum Biol 22: 731–740. doi:10.1002/ajhb.21074.
[34]  Tanner S, Leonard WR, Mcdade TW, Reyes-Garcia V, Godoy R, et al. (2009) Influence of helminth infections on childhood nutritional status in lowland Bolivia. Am J Hum Biol 21: 651–656. doi:10.1002/ajhb.20944.
[35]  Benefice E, Monroy SL, Jiménez S, López R (2006) Nutritional status of Amerindian children from the Beni River (lowland Bolivia) as related to environmental, maternal and dietary factors. Public Health Nutrition 9: 327–335. doi:10.1079/PHN2005852.
[36]  Foster Z, Byron E, Reyes-García V, Huanca T, Vadez V, et al. (2005) Physical growth and nutritional status of Tsimane' Amerindian children of lowland Bolivia. Am J Phys Anthropol 126: 343–351. doi:10.1002/ajpa.20098.
[37]  McDade TW, Williams S, Snodgrass JJ (2007) What a drop can do: dried blood spots as a minimally invasive method for integrating biomarkers into population-based research. Demography 44: 899–925. doi: 10.1353/dem.2007.0038
[38]  Tanner S, McDade TW (2007) Enzyme immunoassay for total immunoglobulin E in dried blood spots. Am J Hum Biol 19: 440–442. doi:10.1002/ajhb.20635.
[39]  Terhell AJ, Price R, Koot JWM, Abadi K, Yazdanbakhsh M (2001) The development of specific IgG4 and IgE in a paediatric population is influenced by filarial endemicity and gender. Parasitology 121: 535–543. doi:10.1017/S0031182099006617.
[40]  Stapel SO, Eysink PED, Vrieze J, Aalberse RC (2004) IgE testing in capillary blood. Pediatric Allergy Immunol 15: 230–233. doi:10.1111/j.1399-3038.2004.00142.x.
[41]  Eberl M, Al-Sherbiny M, Hagan P, Ljubojevic S, Thomas AW, et al. (2002) A novel and sensitive method to monitor helminth infections by faecal sampling. Acta Tropica 83: 183–187. doi:10.1016/S0001-706X(02)00089-X.
[42]  Gurven M, Kaplan H, Supa AZ (2007) Mortality experience of Tsimane Amerindians of Bolivia: regional variation and temporal trends. Am J Hum Biol 19: 376–98. doi:10.1002/ajhb.20600.
[43]  Wood SN (2006) Generalized additive models: an introduction with R. CRC Press.
[44]  Hastie T, Tibshirani R (1986) Generalized additive models. Statistical Science 1: 297–310. doi: 10.1214/ss/1177013604
[45]  Wood SN (2008) Fast stable direct fitting and smoothness selection for generalized additive models. J Royal Statist Soc B 70: 495. doi:10.1111/j.1467-9868.2007.00646.x.
[46]  Wood SN (2003) Thin Plate Regression Splines. J Royal Statist Soc B 65: 95–114. doi:10.1111/1467-9868.00374.
[47]  Bergmann RL, Schulz J, Gunther S, Dudenhausen JW, Bergmann KE, et al. (1995) Determinants of cord-blood IgE concentrations in 6401 German neonates. Allergy 50: 65–71. doi:10.1111/j.1398-9995.1995.tb02484.x.
[48]  Bjerke T, Hedegaard M, Henriksen TB, Nielsen BW, Schiotz PO (1994) Several genetic and environmental factors influence cord blood IgE concentration. Pediatric Allergy Immunol 5: 88–94. doi:10.1111/j.1399-3038.1994.tb00223.x.
[49]  Croner S, Kjellman NI, Eriksson B, Roth A (1982) IgE screening in 1701 newborn infants and the development of atopic disease during infancy. Br Med J 57: 364–368. doi:10.1136/adc.57.5.364.
[50]  Holt PG, Jones CA (2000) The development of the immune system during pregnancy and early life. Allergy: Europ J Allergy Clin Immunol 55: 688–697. doi:10.1034/j.1398-9995.2000.00118.x.
[51]  Lopez N, Barros-Mazon S de, Marluce Dos Santos Vilela M, Condino Neto A, Ribeiro JD (2002) Are immunoglobulin E levels associated with early wheezing? A prospective study in Brazilian infants. Europ Respir J 20: 640. doi:10.1183/09031936.02.00219302.
[52]  Petridou E, Kanariou M, Liatsis M, Spanou K, Revinthi K, et al. (1995) Factors influencing serum immunoglobulin E levels in Greek children. Allergy 50: 210–214. doi:10.1111/j.1398-9995.1995.tb01135.x.
[53]  King CL, Malhotra I, Mungai P, Wamachi A, Kioko J, et al. (1998) B cell sensitization to helminthic infection develops in utero in humans. J Immunol 160: 3578–3584.
[54]  Weil GJ, Hussain R, Kumaraswami V, Tripathy SP, Phillips KS, et al. (1983) Prenatal allergic sensitization to helminth antigens in offspring of parasite-infected mothers. J Clin Invest 71: 1124. doi:10.1172/JCI110862.
[55]  Walter SD, Feinstein AR, Wells CK (1987) Coding ordinal independent variables in multiple regression analyses. Am J Epidemiol 125: 319.
[56]  Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automatic Control 19: 716–723. doi: 10.1109/tac.1974.1100705
[57]  Buckley CE, Larrick JW, Kaplan JE (1985) Population differences in cutaneous methacholine reactivity and circulating IgE concentrations. J Allergy Clin Immunol 76: 847. doi:10.1016/0091-6749(85)90759-6.
[58]  Kaplan JE, Larrick JW, Yost JA (1980) Hyperimmunoglobulinemia E in the Waorani, an isolated Amerindian population. Am Journal Trop Med Hygiene 29: 1012–1017.
[59]  Kron MA, Ammunariz M, Pandey J, Guzman JR (2000) Hyperimmunoglobulinemia E in the absence of atopy and filarial infection: the Huaorani of Ecuador. Allergy Asthma Proc 21: 335–341. doi:10.2500/108854100778249060.
[60]  Grundbacher F (1975) Causes of variation in serum IgE levels in normal populations. J Allergy Clin Immunol 56: 104–111. doi:10.1016/0091-6749(75)90114-1.
[61]  Dodig S, Richter D, Benko B, Zivcic J, Raos M, et al. (2006) Cut-off values for total serum immunoglobulin E between non-atopic and atopic children in north-west Croatia. Clin Chem Laborat Med 44: 639. doi: 10.1515/cclm.2006.092
[62]  Woolhouse MEJ (1992) A theoretical framework for the immunoepidemiology of helminth infection. Parasite Immunology 14: 563–578. doi:10.1111/j.1365-3024.1992.tb00029.x.
[63]  Warren K (1974) Helminthic diseases endemic in the United States. Am J Trop Med Hyg 23: 723–730.
[64]  Hotez PJ (2008) Neglected infections of poverty in the United States of America. PLoS Neglected Tropical Diseases 2: e256. doi:10.1371/journal.pntd.0000256.
[65]  Kappus KD, Lundgren RG, Juranek DD, Roberts JM, Spencer HC (1994) Intestinal Parasitism in the United States: Update on a Continuing Problem. Am J Trop Med Hyg 50: 705–713.
[66]  Amin OM (2002) Seasonal prevalence of intestinal parasites in the United States during 2000. Am J Trop Med Hyg 66: 799–803.
[67]  McSharry C, Xia Y, Holland CV, Kennedy MW (1999) Natural immunity to Ascaris lumbricoides associated with immunoglobulin E antibody to ABA-1 allergen and inflammation indicators in children. Infect Immun 67: 484–9.
[68]  Hagel I, Cabrera M, Buvat E, Gutiérrez L, Santaella C, et al. (2008) Antibody responses and resistance against Ascaris lumbricoides infection among Venezuelan rural children: the influence of ethnicity. J Trop Pediat 54: 354–6. doi:10.1093/tropej/fmn032.
[69]  Cooper PJ, Ayre G, Martin C, Rizzo JA, Ponte EV, et al. (2008) Geohelminth infections: a review of the role of IgE and assessment of potential risks of anti-IgE treatment. Allergy 63: 409–17. doi:10.1111/j.1398-9995.2007.01601.x.
[70]  Perlmann H, Helmby H, Hagstedt M, Carlson J, Larsson PH, et al. (1994) IgE elevation and IgE anti-malarial antibodies in Plasmodium falciparum malaria: association of high IgE levels with cerebral malaria. Clin Exper Immunol 97: 284–292. doi:10.1111/j.1365-2249.1994.tb06082.x.
[71]  Yazdanbakhsh M, Wahyuni S (2005) The role of helminth infections in protection from atopic disorders. Cur Opin Allergy Clin Immunol 5: 386–391. doi: 10.1097/01.all.0000182541.52971.eb

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133