全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Levofloxacin Cures Experimental Pneumonic Plague in African Green Monkeys

DOI: 10.1371/journal.pntd.0000959

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Yersinia pestis, the agent of plague, is considered a potential bioweapon due to rapid lethality when delivered as an aerosol. Levofloxacin was tested for primary pneumonic plague treatment in a nonhuman primate model mimicking human disease. Methods and Results Twenty-four African Green monkeys (AGMs, Chlorocebus aethiops) were challenged via head-only aerosol inhalation with 3–145 (mean = 65) 50% lethal (LD50) doses of Y. pestis strain CO92. Telemetered body temperature >39°C initiated intravenous infusions to seven 5% dextrose controls or 17 levofloxacin treated animals. Levofloxacin was administered as a “humanized” dose regimen of alternating 8 mg/kg and 2 mg/kg 30-min infusions every 24-h, continuing until animal death or 20 total infusions, followed by 14 days of observation. Fever appeared at 53–165 h and radiographs found multilobar pneumonia in all exposed animals. All control animals died of severe pneumonic plague within five days of aerosol exposure. All 16 animals infused with levofloxacin for 10 days survived. Levofloxacin treatment abolished bacteremia within 24 h in animals with confirmed pre-infusion bacteremia, and reduced tachypnea and leukocytosis but not fever during the first 2 days of infusions. Conclusion Levofloxacin cures established pneumonic plague when treatment is initiated after the onset of fever in the lethal aerosol-challenged AGM nonhuman primate model, and can be considered for treatment of other forms of plague. Levofloxacin may also be considered for primary presumptive-use, multi-agent antibiotic in bioterrorism events prior to identification of the pathogen.

References

[1]  Perry RD, Fetherston JD (1997) Yersinia pestis - etiologic agent of plague. Clin Microbiol Rev 10: 35–66.
[2]  Krishna G, Chitkara RK (2003) Pneumonic plague. Semin Respir Infect 18: 159–167.
[3]  Inglesby TV, Dennis DT, Henderson DA, Bartlett JG, Ascher MS, et al. (2000) Plague as a bioweapon. Medical management and prevention. JAMA 283:
[4]  Ratsitorahina M, Chanteau S, Rahalison L, Ratsifasoamanana L, Boisier P (2000) Epidemiological and diagnostic aspects of the outbreak of pneumonic plague in Madagascar. Lancet 355: 111–113. doi: 10.1016/S0140-6736(99)05163-6
[5]  Begier EM, Asiki G, Anywaine Z, Yockey B, Schriefer ME, et al. (2006) Pneumonic plague cluster, Uganda, 2004. Emerging Infectious Diseases 12: 460–467. doi: 10.3201/eid1205.051051
[6]  Kool JL (2005) Risk of person-to-person transmission of pneumonic plague. Clin Infect Dis 40: 1166–1172. doi: 10.1086/428617
[7]  Cohen RJ, Stockard JL (1967) Pneumonic plague in an unteated plague-vaccinated individual. JAMA 202: 365–366. doi: 10.1001/jama.202.4.365
[8]  Doll JM, Zeitz PS, Ettestad P, Bucholtz AL, Davis T, et al. (1994) Cat-transmitted fatal pneumonic plague in a person who traveled from Colorado to Arizona. Am J Trop Med Hyg 51: 109–114.
[9]  Werner SB, Weidmer CE, Nelson BC, Nygaard GS, Goethals RM, et al. (1984) Primary plague pneumonia contracted from a domestic cat at South Lake Tahoe, Calif. JAMA 251: 929–931. doi: 10.1001/jama.251.7.929
[10]  Smith PN (1959) Pneumonic plague in mice: gross and histopathology in untreated and passively immunized animals. J Infect Dis 104: 78–84. doi: 10.1093/infdis/104.1.78
[11]  Lathem WW, Crosby SD, Miller VL, Goldman WE (2005) Progression of primary pneumonic plague: a mouse model of infection, pathology, and bacterial transcriptional activity. Proc Nat Acad Sci US 102: 17786–17791. doi: 10.1073/pnas.0506840102
[12]  Bubeck SS, Cantwell AM, Dube PH (2007) Delayed inflammatory response to primary pneumonic plage occurs in both outbred and inbread mice. Infect Immun 75: 697–705. doi: 10.1128/IAI.00403-06
[13]  Agar SL, Sha J, Foltz SM, Erova TE, Walberg KG, et al. (2009) Characterization of the rat pneumonic plague model: infection kinetics following aerosolization of Yersinia pestis CO92. Microbes Infect 11: 205–214. doi: 10.1016/j.micinf.2008.11.009
[14]  Cornelis GR (2000) Molecular and cell biology aspects of plague. Proc Nat Acad Sci US 97: 8778–8783. doi: 10.1073/pnas.97.16.8778
[15]  Bosio CM, Goodyear AW, Dow SW (2005) Early Interaction of Yersinia pestis with APCs in the Lung. J Immunol 175: 6750–6756.
[16]  Lawson JN, Lyons CR, Johnston SA (2006) Expression profiling of Yersinia pestis during mouse pulmonary infection. DNA Cell Biol 25: 608–616. doi: 10.1089/dna.2006.25.608
[17]  Byrne WR, Welkos SL, Pitt LM, Davis KJ, Brueckner RP, et al. (1998) Antibiotic treatment of experimental pneumonic plague in mice. Antimicrob Agents Chemother 42: 675–681.
[18]  Finegold MJ, Petery JJ, Berendt RF, Adams HR (1968) Studies on the pathogenesis of plague. Blood coagulation and tissue responses of Macaca mulatta following exposure to aerosols of Pasteurella pestis. Am J Pathol 53: 99–114.
[19]  Meyer KF, Smith G, Foster L, Brookman M, Sung M (1974) Live, attenuated Yersinia pestis vaccine: virulent in nonhuman primates, harmless to guinea pigs. J Infect Dis 129: S85–S112.
[20]  Davis KJ, Fritz DL, Pitt LM, Welkos S, Worsham PL, et al. (1996) Pathology of experimental pneumonic plague produced by fraction-1-positive and fraction-1-negative Yersinia pestis in African green monkeys. Arch Pathol Lab Med 120: 156–162.
[21]  Adamovicz JJ, Worsham PL (2006) Plague. In: Swearengen J, editor. Biodefense research methodology and animal models. Boca Raton: Taylor & Francis. pp. 107–135.
[22]  Layton RC, Brasel TL, Gigliotti A, Barr E, Storch S, et al. (2010) Primary pneumonic plague in the African Green monkey as a model for treatment efficacy evaluation. J Med Primatol. in press. doi: 10.1111/j.1600-0684.2010.00443.x
[23]  Buehler JW, Berkelman RL, Hartley DM, Peters CJ (2003) Syndromic surveillance and bioterrorism-related epidemics. Emerging Infectious Diseases 9: 1197–1204. doi: 10.3201/eid0910.030231
[24]  Babin SM (2010) Using syndromic surveillance systems to detect pneumonic plague. Epidemiol Infect 138: 1–8. doi: 10.1017/S0950268809990689
[25]  Van den Wijngaard C, Van Asten L, Van Pelt W, Doornbos G, Nagelkerke NJD, et al. (2010) Syndromic surveillance for local outbreaks of lower-respiratory infections: Would it work? PLoS ONE 5: doi: 10.1371/journal.pone.0010406
[26]  Deziel MR, Heine HS, Louie A, Kao ML, Byrne WR, et al. (2005) Identification of effective antimicrobial regimens for use in humans for the therapy of Bacillus anthracis infections and postexposure prophylaxis. Antimicrob Agents Chemother 49: 5099–5106. doi: 10.1128/AAC.49.12.5099-5106.2005
[27]  Kao ML, Bush K, Barnewell R, Estep J, Thalacker FW, et al. (2006) Pharmacokinetic considerations and efficacy of levofloxacin in an inhalational anthrax (postexposure) rhesus monkey model. Antimicrob Agents Chemother 50: 3535–3542. doi: 10.1128/AAC.00090-06
[28]  Anderson VR, Perry CM (2008) Levofloxacin: a review of its use as a high-dose, short-course treatment for bacterial infections. Drugs 68: 535–565. doi: 10.2165/00003495-200868040-00011
[29]  Noreddin AM, Elkhatib WF (2010) Levofloxacin in the treatment of community-acquired pneumonia. Expert Rev Anti Infect Ther 8: 505–514. doi: 10.1586/eri.10.35
[30]  Bryant JM (1980) Vest and tethering system to accomodate catheters and a temperature monitor for nonhuman primates. Lab Anim Sci 30: 706–708.
[31]  Hartings JM, Roy CJ (2004) The automated bioaerosol exposure system: preclinical platform development and a respiratory dosimetry application with nonhuman primates. J Pharmacol Toxicol Methods 49: 39–55. doi: 10.1016/j.vascn.2003.07.001
[32]  Cheng Y-S, Irshad H, Kuehl P, Holmes TD, Sherwood R, et al. (2008) Lung deposition of droplet aerosols in monkeys. Inhalation Toxicology 20: 1029–1036. doi: 10.1080/08958370802105413
[33]  Koster FT, Perlin DS, Park S, Brasel TL, Gigliotti A, et al. (2010) Milestones in progression of primary pneumonic plague in cynomolgus macaques. Infect Immun 78: 2946–2955. doi: 10.1128/IAI.01296-09
[34]  Heine HS, Louie A, Sorgel F, Bassett J, Miller L, et al. (2007) Comparison of 2 antibiotics that inhibit protein synthesis for the treatment of infection with Yersinia pestis delivered by aerosol in a mouse model of pneumonic plague. J Infect Dis 196: 782–787. doi: 10.1086/520547
[35]  Van Andel R, Sherwood R, Gennings C, Lyons CR, Hutt J, et al. (2008) Clinical and pathologic features of cynomolgus macaques (Macaca fascicularis) infected with aerosolized Yersinia pestis. Comparative Medicine 58: 68–75.
[36]  Cornelius CA, Quenee LE, Overheim KA, Koster FT, Brasel TL, et al. (2008) Immunization with recombinant V10 protects cynomolgus macaques from lethal pneumonic plague. Infect Immun 76: 5588–5597. doi: 10.1128/IAI.00699-08
[37]  Boulanger LL, Ettestad P, Fogarty JD, Dennis DT, Romig D, et al. (2004) Gentamicin and tetracyclines for the treatment of human plague: review of 75 cases in New Mexico, 1985–1999. Clin Infect Dis 38: 663–669. doi: 10.1086/381545
[38]  Mwengee W, Butler T, Mgema S, Mhina G, Almasi Y, et al. (2006) Treatment of plague with gentamicin or doxycycline in a randomized clinical trial in Tanzania. Clin Infect Dis 42: 614–621. doi: 10.1086/500137
[39]  Hernandez E, Girardet M, Ramisse F, Vidal D, Cavallo J-D (2003) Antibiotic susceptibilities of 94 isolates of Yersinia pestis to 24 antimicrobial agents. J Antimicrob Chemother 52: 1029–1031. doi: 10.1093/jac/dkg484
[40]  Thomas RJ, Webber D, Collinge A, Stagg AJ, Bailey SC, et al. (2009) pp. 1315–1323. Different Pathologies but Equal Levels of Responsiveness to the Recombinant F1 and V Antigen Vaccine and Ciprofloxacin in a Murine Model of Plague Caused by Small- and Large-Particle Aerosols.
[41]  Vietri NJ, Purcell BK, Lawler JV, Leffel EK, Rico P, et al. (2006) Short-course postexposure antibiotic prophylaxis combined with vaccination protects against experimental inhalational anthrax. Proc Nat Acad Sci US 103: 7813–7816. doi: 10.1073/pnas.0602748103
[42]  Galimand M, Carniel E, Courvalin P (2006) Resistance of Yersinia pestis to Antimicrobial Agents. Antimicrob Agents Chemother 50: 3233–3236. doi: 10.1128/AAC.00306-06
[43]  Anupama M, Seiler JP, Murthy PB (2010) A comparative analysis of chromosomal aberrations in cultured human lymphocytes due to fluoroquinolone drugs at different expression periods. Arch Toxicol 84: 411–420. doi: 10.1007/s00204-009-0509-9
[44]  Liu HH (2010) Safety profile of the fluoroquinolones: focus on levofloxacin. Drug Saf 33: 353–369. doi: 10.2165/11536360-000000000-00000
[45]  Louie A, Deziel MR, Liu W, Drusano GL (2007) Impact of resistance selection and mutant growth fitness on the relative efficacies of streptomycin and levofloxacin for plague therapy. Antimicrob Agents Chemother 51: 2661–2667. doi: 10.1128/AAC.00073-07
[46]  Hutschala D, Skhirtladze K, Zuckermann A, Wisser W, Jaksch P, et al. (2005) In vivo measurement of levofloxacin penetration into lung tissue after cardiac surgery. Antimicrob Agents Chemother 49: 5107–5111. doi: 10.1128/AAC.49.12.5107-5111.2005
[47]  Rodvold KA, Danziger LH, Gotfried MH (2003) Steady-state plasma and bronchopulmonary concentrations of intravenous levofloxacin and azrithromycin in health adults. Antimicrob Agents Chemother 47: 2450–2457. doi: 10.1128/AAC.47.8.2450-2457.2003

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133