全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Filarial Worms Reduce Plasmodium Infectivity in Mosquitoes

DOI: 10.1371/journal.pntd.0000963

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Co-occurrence of malaria and filarial worm parasites has been reported, but little is known about the interaction between filarial worm and malaria parasites with the same Anopheles vector. Herein, we present data evaluating the interaction between Wuchereria bancrofti and Anopheles punctulatus in Papua New Guinea (PNG). Our field studies in PNG demonstrated that An. punctulatus utilizes the melanization immune response as a natural mechanism of filarial worm resistance against invading W. bancrofti microfilariae. We then conducted laboratory studies utilizing the mosquitoes Armigeres subalbatus and Aedes aegypti and the parasites Brugia malayi, Brugia pahangi, Dirofilaria immitis, and Plasmodium gallinaceum to evaluate the hypothesis that immune activation and/or development by filarial worms negatively impact Plasmodium development in co-infected mosquitoes. Ar. subalbatus used in this study are natural vectors of P. gallinaceum and B. pahangi and they are naturally refractory to B. malayi (melanization-based refractoriness). Methodology/Principal Findings Mosquitoes were dissected and Plasmodium development was analyzed six days after blood feeding on either P. gallinaceum alone or after taking a bloodmeal containing both P. gallinaceum and B. malayi or a bloodmeal containing both P. gallinaceum and B. pahangi. There was a significant reduction in the prevalence and mean intensity of Plasmodium infections in two species of mosquito that had dual infections as compared to those mosquitoes that were infected with Plasmodium alone, and was independent of whether the mosquito had a melanization immune response to the filarial worm or not. However, there was no reduction in Plasmodium development when filarial worms were present in the bloodmeal (D. immitis) but midgut penetration was absent, suggesting that factors associated with penetration of the midgut by filarial worms likely are responsible for the observed reduction in malaria parasite infections. Conclusions/Significance These results could have an impact on vector infection and transmission dynamics in areas where Anopheles transmit both parasites, i.e., the elimination of filarial worms in a co-endemic locale could enhance malaria transmission.

References

[1]  Breman JG (2001) The ears of the hippopotamus: manifestations, determinants, and estimates of the malaria burden. Am J Trop Med Hyg 64: 1–11.
[2]  Molyneux DH (2006) Control of human parasitic diseases: Context and overview. Adv Parasitol 61: 1–45. doi: 10.1016/S0065-308X(05)61001-9
[3]  Muturi EJ, Jacob BG, Kim CH, Mbogo CM, Novak RJ (2008) Are coinfections of malaria and filariasis of any epidemiological significance? Parasitol Res 102: 175–181. doi: 10.1007/s00436-007-0779-1
[4]  Mathers CD, Ezzati M, Lopez AD (2007) Measuring the burden of neglected tropical diseases: the global burden of disease framework. PLoS Negl Trop Dis 1: e114. doi: 10.1371/journal.pntd.0000114
[5]  Burkot TR, Molineaux L, Graves PM, Paru R, Battistutta D, et al. (1990) The prevalence of naturally acquired multiple infections of Wuchereria bancrofti and human malarias in anophelines. Parasitology 100 Pt 3: 369–375. doi: 10.1017/s003118200007863x
[6]  Muirhead-Thomson RC (1953) Inter-relations between filarial and malarial infections in Anopheles gambiae. Nature 172: 352–353. doi: 10.1038/172352a0
[7]  Chadee DD, Rawlins SC, Tiwari TS (2003) Short communication: concomitant malaria and filariasis infections in Georgetown, Guyana. Trop Med Int Health 8: 140–143. doi: 10.1046/j.1365-3156.2003.01001.x
[8]  Muturi EJ, Mbogo CM, Mwangangi JM, Ng'ang'a ZW, Kabiru EW, et al. (2006) Concomitant infections of Plasmodium falciparum and Wuchereria bancrofti on the Kenyan coast. Filaria J 5: 8. doi: 10.1186/1475-2883-5-8
[9]  Mehlotra RK, Gray LR, Blood-Zikursh MJ, Kloos Z, Henry-Halldin CN, et al. (2010) Molecular-based assay for simultaneous detection of four Plasmodium spp. and Wuchereria bancrofti infections. Am J Trop Med Hyg 82: 1030–1033. doi: 10.4269/ajtmh.2010.09-0665
[10]  Manguin S, Bangs MJ, Pothikasikorn J, Chareonviriyaphap T (2010) Review on global co-transmission of human Plasmodium species and Wuchereria bancrofti by Anopheles mosquitoes. Infect Genet Evol 10: 159–177. doi: 10.1016/j.meegid.2009.11.014
[11]  Reeder JC (2003) Health research in Papua New Guinea. Trends Parasitol 19: 241–245. doi: 10.1016/S1471-4922(03)00089-8
[12]  Kelly-Hope LA, Diggle PJ, Rowlingson BS, Gyapong JO, Kyelem D, et al. (2006) Short communication: Negative spatial association between lymphatic filariasis and malaria in West Africa. Trop Med Int Health 11: 129–135. doi: 10.1111/j.1365-3156.2005.01558.x
[13]  Zimmerman PA, Mehlotra RK, Kasehagen LJ, Kazura JW (2004) Why do we need to know more about mixed Plasmodium species infections in humans? Trends Parasitol 20: 440–447. doi: 10.1016/j.pt.2004.07.004
[14]  Gurarie D, Zimmerman PA, King CH (2006) Dynamic regulation of single- and mixed-species malaria infection: insights to specific and non-specific mechanisms of control. J Theor Biol 240: 185–199. doi: 10.1016/j.jtbi.2005.09.015
[15]  Pichon G (2002) Limitation and facilitation in the vectors and other aspects of the dynamics of filarial transmission: the need for vector control against Anopheles-transmitted filariasis. Ann Trop Med Parasitol 96: Suppl 2S143–152. doi: 10.1179/000349802125002509
[16]  Yamamoto H, Kobayashi M, Ogura N, Tsuruoka H, Chigusa Y (1985) Studies on filariasis VI: The encapsulation of Brugia malayi and B. pahangi larvae in the mosquito, Armigeres subalbatus. Jpn J Sanit Zool 36: 1–6.
[17]  Garnham P (1966) Malaria parasites and other haemosporidia. Oxford Blackwell Scientific.
[18]  Beerntsen BT, Luckhart S, Christensen BM (1989) Brugia malayi and Brugia pahangi: inherent difference in immune activation in the mosquitoes Armigeres subalbatus and Aedes aegypti. J Parasitol 75: 76–81. doi: 10.2307/3282940
[19]  Lowenberger CA, Kamal S, Chiles J, Paskewitz S, Bulet P, et al. (1999) Mosquito-Plasmodium interactions in response to immune activation of the vector. Exp Parasitol 91: 59–69. doi: 10.1006/expr.1999.4350
[20]  Bartholomay LC, Farid HA, El Kordy E, Christensen BM (2001) Short report: A practical technique for the cryopreservation of Dirofilaria immitis, Brugia malayi, and Wuchereria bancrofti microfilariae. Am J Trop Med Hyg 65: 162–163.
[21]  Rutledge LC, Ward RA, Gould DJ (1964) Studies on the feeding response of mosquitoes to nutritive solutions in a new membrane feeder. Mosquito News 24: 407–419.
[22]  Bennuru S, Semnani R, Meng Z, Ribeiro JM, Veenstra TD, et al. (2009) Brugia malayi excreted/secreted proteins at the host/parasite interface: stage- and gender-specific proteomic profiling. PLoS Negl Trop Dis 3: e410. doi: 10.1371/journal.pntd.0000410
[23]  Rozsa L, Reiczigel J, Majoros G (2000) Quantifying parasites in samples of hosts. J Parasitol 86: 228–232. doi: 10.1645/0022-3395(2000)086[0228:QPISOH]2.0.CO;2
[24]  Reiczigel J, Abonyi-Toth Z, Singer J (2008) An exact confidence set for binomial proportions and exact unconditional confidence intervals for the difference and ratio proportions. Computational Statistics and Data Analysis 52: 5046–5053. doi: 10.1016/j.csda.2008.04.032
[25]  Snow LC, Bockarie MJ, Michael E (2006) Transmission dynamics of lymphatic filariasis: vector-specific density dependence in the development of Wuchereria bancrofti infective larvae in mosquitoes. Med Vet Entomol 20: 261–272. doi: 10.1111/j.1365-2915.2006.00629.x
[26]  Bockarie MJ, Kazura JW (2003) Lymphatic filariasis in Papua New Guinea: prospects for elimination. Med Microbiol Immunol 192: 9–14. doi: 10.1007/s00430-002-0153-y
[27]  Burkot TR, Graves PM, Paru R, Wirtz RA, Heywood PF (1988) Human malaria transmission studies in the Anopheles punctulatus complex in Papua New Guinea: sporozoite rates, inoculation rates, and sporozoite densities. Am J Trop Med Hyg 39: 135–144.
[28]  Christensen BM, Li J, Chen CC, Nappi AJ (2005) Melanization immune responses in mosquito vectors. Trends Parasitol 21: 192–199. doi: 10.1016/j.pt.2005.02.007
[29]  Zahedi M (1994) The fate of Brugia pahangi microfilariae in Armigeres subalbatus during the first 48 hours post ingestion. Trop Med Parasitol 45: 33–35.
[30]  Aliota MT, Fuchs JF, Mayhew GF, Chen CC, Christensen BM (2007) Mosquito transcriptome changes and filarial worm resistance in Armigeres subalbatus. BMC Genomics 8: 463. doi: 10.1186/1471-2164-8-463
[31]  Aliota MT, Fuchs JF, Rocheleau TA, Clark AK, Hillyer JF, et al. (2010) Mosquito transcriptome profiles and filarial worm susceptibility in Armigeres subalbatus. PLoS Negl Trop Dis 4: e666. doi: 10.1371/journal.pntd.0000666
[32]  Chen CC, Laurence BR (1985) An ultrastructural study on the encapsulation of microfilariae of Brugia pahangi in the haemocoel of Anopheles quadrimaculatus. Int J Parasitol 15: 421–428. doi: 10.1016/0020-7519(85)90028-1
[33]  Alavi Y, Arai M, Mendoza J, Tufet-Bayona M, Sinha R, et al. (2003) The dynamics of interactions between Plasmodium and the mosquito: a study of the infectivity of Plasmodium berghei and Plasmodium gallinaceum, and their transmission by Anopheles stephensi, Anopheles gambiae and Aedes aegypti. Int J Parasitol 33: 933–943. doi: 10.1016/S0020-7519(03)00112-7
[34]  Zieler H, Nawrocki JP, Shahabuddin M (1999) Plasmodium gallinaceum ookinetes adhere specifically to the midgut epithelium of Aedes aegypti by interaction with a carbohydrate ligand. J Exp Biol 202: 485–495.
[35]  Sieber KP, Huber M, Kaslow D, Banks SM, Torii M, et al. (1991) The peritrophic membrane as a barrier: its penetration by Plasmodium gallinaceum and the effect of a monoclonal antibody to ookinetes. Exp Parasitol 72: 145–156. doi: 10.1016/0014-4894(91)90132-G
[36]  Infanger LC, Rocheleau TA, Bartholomay LC, Johnson JK, Fuchs J, et al. (2004) The role of phenylalanine hydroxylase in melanotic encapsulation of filarial worms in two species of mosquitoes. Insect Biochem Mol Biol 34: 1329–1338. doi: 10.1016/j.ibmb.2004.09.004
[37]  Christensen BM, Sutherland DR, Gleason LN (1984) Defense reactions of mosquitoes to filarial worms: comparative studies on the response of three different mosquitoes to inoculated Brugia pahangi and Dirofilaria immitis microfilariae. J Invertebr Pathol 44: 267–274. doi: 10.1016/0022-2011(84)90024-7
[38]  Albuquerque CM, Ham PJ (1995) Concomitant malaria (Plasmodium gallinaceum) and filaria (Brugia pahangi) infections in Aedes aegypti: effect on parasite development. Parasitology 110(Pt 1): 1–6. doi: 10.1017/S0031182000080987
[39]  Perrone JB, Spielman A (1986) Microfilarial perforation of the midgut of a mosquito. J Parasitol 72: 723–727. doi: 10.2307/3281463
[40]  Maier WA, Becker-Feldman H, Seitz HM (1987) Pathology of malaria-infected mosquitoes. Parasitol Today 3: 216–218. doi: 10.1016/0169-4758(87)90063-9
[41]  Syafruddin , Arakawa R, Kamimura K, Kawamoto F (1991) Penetration of the mosquito midgut wall by the ookinetes of Plasmodium yoelii nigeriensis. Parasitol Res 77: 230–236. doi: 10.1007/BF00930863
[42]  Baton LA, Ranford-Cartwright LC (2004) Plasmodium falciparum ookinete invasion of the midgut epithelium of Anopheles stephensi is consistent with the Time Bomb model. Parasitology 129: 663–676. doi: 10.1017/S0031182004005979
[43]  Bain O, Brengues J (1972) [Transmission of wuchereriasis and of bovine setariasis: histological study of the passage of microfilariae through the stomach wall of Anopheles gambiae A and Aedes aegypti]. Ann Parasitol Hum Comp 47: 399–412.
[44]  Gupta L, Kumar S, Han YS, Pimenta PF, Barillas-Mury C (2005) Midgut epithelial responses of different mosquito-Plasmodium combinations: the actin cone zipper repair mechanism in Aedes aegypti. Proc Natl Acad Sci U S A 102: 4010–4015. doi: 10.1073/pnas.0409642102
[45]  Kala MK, Gunasekaran K (1999) Effect of bacillus thuringiensis ssp. israelensis on the development of Plasmodium gallinaceum in Aedes aegypti (Diptera: Culicidae). Ann Trop Med Parasitol 93: 89–95. doi: 10.1080/00034989958843
[46]  Read AF, Graham AL, Raberg L (2008) Animal defenses against infectious agents: is damage control more important than pathogen control. PLoS Biol 6: e4. doi: 10.1371/journal.pbio.1000004
[47]  Erickson SM, Xi Z, Mayhew GF, Ramirez JL, Aliota MT, et al. (2009) Mosquito infection responses to developing filarial worms. PLoS Negl Trop Dis 3: e529. doi: 10.1371/journal.pntd.0000529
[48]  Restif O, Koella JC (2004) Concurrent evolution of resistance and tolerance to pathogens. Am Nat 164: E90–102. doi: 10.1086/423713
[49]  Dong Y, Manfredini F, Dimopoulos G (2009) Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog 5: e1000423. doi: 10.1371/journal.ppat.1000423
[50]  Green DR, Ferguson T, Zitvogel L, Kroemer G (2009) Immunogenic and tolerogenic cell death. Nat Rev Immunol 9: 353–363. doi: 10.1038/nri2545
[51]  Peng Y, Martin DA, Kenkel J, Zhang K, Ogden CA, et al. (2007) Innate and adaptive immune response to apoptotic cells. J Autoimmun 29: 303–309. doi: 10.1016/j.jaut.2007.07.017
[52]  Jiang H, Patel PH, Kohlmaier A, Grenley MO, McEwen DG, et al. (2009) Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137: 1343–1355. doi: 10.1016/j.cell.2009.05.014
[53]  Okuda K, de Almeida F, Mortara RA, Krieger H, Marinotti O, et al. (2007) Cell death and regeneration in the midgut of the mosquito, Culex quinquefasciatus. J Insect Physiol 53: 1307–1315. doi: 10.1016/j.jinsphys.2007.07.005
[54]  Ottesen EA (2000) The global programme to eliminate lymphatic filariasis. Trop Med Int Health 5: 591–594. doi: 10.1046/j.1365-3156.2000.00620.x
[55]  Brady MA, Hooper PJ, Ottesen EA (2006) Projected benefits from integrating NTD programs in sub-Saharan Africa. Trends Parasitol 22: 285–291. doi: 10.1016/j.pt.2006.05.007
[56]  Gyapong JO, Gyapong M, Yellu N, Anakwah K, Amofah G, et al. (2010) Integration of control of neglected tropical diseases into health-care systems: challenges and opportunities. Lancet 375: 160–165. doi: 10.1016/S0140-6736(09)61249-6
[57]  Liese B, Rosenberg M, Schratz A (2010) Programmes, partnerships, and governance for elimination and control of neglected tropical diseases. Lancet 375: 67–76. doi: 10.1016/S0140-6736(09)61749-9
[58]  Bockarie MJ, Pedersen EM, White GB, Michael E (2009) Role of vector control in the global program to eliminate lymphatic filariasis. Annu Rev Entomol 54: 469–487. doi: 10.1146/annurev.ento.54.110807.090626

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133