Background Visceral leishmaniasis is the most severe form of leishmaniasis. Approximately 20% of zoonotic human visceral leishmaniasis worldwide is caused by Leishmania infantum, which is also known as Leishmania chagasi in Latin America, and disease incidence is increasing in urban and peri-urban areas of the tropics. In this form of disease, dogs are the main reservoirs. Diagnostic methods used to identify Leishmania infected animals are not able to detect all of the infected ones, which can compromise the effectiveness of disease control. Therefore, to contribute to the improvement of diagnostic methods for canine visceral leishmaniasis (CVL), we aimed to identify and test novel antigens using high-throughput analysis. Methodology/Principal Findings Immunodominant proteins from L. infantum were mapped in silico to predict B cell epitopes, and the 360 predicted peptides were synthesized on cellulose membranes. Immunoassays were used to select the most reactive peptides, which were then investigated with canine sera. Next, the 10 most reactive peptides were synthesized using solid phase peptide synthesis protocol and tested using ELISA. The sensitivity and specificity of these peptides were also compared to the EIE-LVC Bio-Manguinhos kit, which is recommended by the Brazilian Ministry of Health for use in leishmaniasis control programs. The sensitivity and specificity of the selected synthesized peptides was as high as 88.70% and 95.00%, respectively, whereas the EIE-LVC kit had a sensitivity of 13.08% and 100.00% of specificity. Although the tests based on synthetic peptides were able to diagnose up to 94.80% of asymptomatic dogs with leishmaniasis, the EIE-LVC kit failed to detect the disease in any of the infected asymptomatic dogs. Conclusions/Significance Our study shows that ELISA using synthetic peptides is a technique with great potential for diagnosing CVL; furthermore, the use of these peptides in other diagnostic methodologies, such as immunochromatographic tests, could be beneficial to CVL control programs.
References
[1]
Maurício IL, Stothard JR, Miles MA (2000) The strange case of Leishmania infantum. Parasitol Today 16: 188–189. doi: 10.1016/S0169-4758(00)01637-9
[2]
Deane LM (1961) Reservoirs of Leishmania donovani in Brazil. Rev Assoc Med Bras 7: 161–169.
[3]
Dantas-Torres F, Brito ME, Brand?o-Filho SP (2006) Seroepidemiological survey on canine leishmaniasis among dogs from an urban area of Brazil. Vet Parasitol 140: 54–60. doi: 10.1016/j.vetpar.2006.03.008
[4]
Michalsky EM, Rocha MF, da Rocha Lima AC, Fran?a-Silva JC, Pires MQ, et al. (2007) Infectivity of seropositive dogs, showing different clinical forms of leishmaniasis, to Lutzomia longipalpis phlebotomine sand flies. Vet Parasitol 147: 67–76. doi: 10.1016/j.vetpar.2007.03.004
[5]
Tesh R (1995) Control of zoonotic visceral leishmaniasis: is it time to change strategies? Am J Trop Med Hyg 52: 287–292.
[6]
Scalone A, Luna R, Oliva G, Baldi L, Satta G, et al. (2002) Evaluation of the Leishmania recombinant K39 antigen as a diagnostic marker for canine leishmaniasis and validation of a standardized enzyme-linked immunosorbent assay. Vet Parasitol 104: 275–285. doi: 10.1016/S0304-4017(01)00643-4
[7]
González L, Boyle RW, Zhang M, Castillo J, Whittier S, et al. (1997) Synthetic-peptide-based enzyme-linked immunosorbent assay for screening human serum or plasma for antibodies to human immunodeficiency virus type 1 and type 2. Clin Diagn Lab Immunol 4: 598–603.
[8]
Ferrer E, Benitez L, Foster-Cuevas M, Bryce D, Wamae LW, et al. (2003) Taenia saginata derived synthetic peptides with potential for the diagnosis of bovine cysticercosis. Vet Parasitol 111: 83–94. doi: 10.1016/S0304-4017(02)00327-8
[9]
Costa MM, Andrade HM, Bartholomeu DC, Freitas L, Pires SF, et al. (2011) Analysis of Leishmania chagasi by 2-D Difference Gel Eletrophoresis (2-D DIGE) and Immunoproteomic: identification of novel candidate antigens for diagnostic tests and vaccine. J Proteome Res 10: 2172–84. doi: 10.1021/pr101286y
[10]
Quinnell RJ, Courtenay O, Davidson S, Garcez L, Lambson B, et al. (2001) Detection of Leishmania infantum by PCR, serology and cellular immune response in a cohort study of Brazilian dogs. Parasitology 122: 253–261. doi: 10.1017/S0031182001007363
[11]
Larsen JE, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2: 2–5. doi: 10.1186/1745-7580-2-2
[12]
Saha S, Raghava GP (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65: 40–48. doi: 10.1002/prot.21078
[13]
El-Manzalawy Y, Dobbs D, Honavar V (2008) Predicting linear B-cell epitopes using string kernels. J Mol Recog 21: 243–255. doi: 10.1002/jmr.893
[14]
Frank R (1992) Spot-synthesis: an easy technique for the positionally addressable parallel chemical synthesis on a membrane support. Tetrahedron 48: 9217–9232. doi: 10.1016/s0040-4020(01)85612-x
[15]
Frank R, Overwin H (1996) SPOT-synthesis: epitope analysis with arrays of synthetic peptides prepared on cellulose membranes. Methods Mol Biol 66: 149–169. doi: 10.1385/0-89603-375-9:149
[16]
Soutullo A, Santi MN, Perin JC, Beltramini LM, Borel IM, et al. (2007) Systematic epitope analysis of the p26 EIAV core protein. J Mol Recognit 20: 227–237. doi: 10.1002/jmr.825
[17]
Atherton E, Bridgen J, Sheppard R (1976) A polyamide support for solid-phase protein sequencing. FEBS Lett 64: 173–175. doi: 10.1016/0014-5793(76)80276-1
[18]
Alves WA, Bevilacqua PD (2004) Reflex?es sobre a qualidade do diagnóstico da leishmaniose visceral canina em inquéritos epidemiológicos: o caso da epidemia de Belo Horizonte, Minas Gerais, Brasil, 1993-1997. Cad Saude Publica, 20: 259–265. doi: 10.1590/S0102-311X2004000100043
[19]
Greiner M, Pfeiffer D, Smith RD (2000) Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev Vet Med 45: 23–41. doi: 10.1016/S0167-5877(00)00115-X
[20]
Cohen J (1968) Weighted kappa: nominal scale agreement with provisions for scales disagreement of partial credit. Psychol Bull 70: 213–220. doi: 10.1037/h0026256
[21]
Landis JR, Koch GG (1977) An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 33: 363–374. doi: 10.2307/2529786
[22]
Youden WJ (1950) Index for rating diagnostic tests. Cancer 3: 32–35. doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
[23]
Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240: 1285–1293. doi: 10.1126/science.3287615
[24]
Yang X, Yu X (2009) An introduction to epitope methods and software. Rev Med Virol 19: 77–96. doi: 10.1002/rmv.602
[25]
Trost B, Bickis M, Kusalik A (2007) Strength in numbers: Achieving greater accuracy in MHC-I binding prediction by combining the results from multiple prediction tools. Immunome Res 24: 3–5. doi: 10.1186/1745-7580-3-5
[26]
Soto M, Requena JM, Quijada L, Alonso C (1998) Multicomponent chimeric antigen for serodiagnosis of canine visceral leishmaniasis. J Clin Microbiol 36: 58–63.
[27]
Porrozzi R, Costa MV, Teva A, Falqueto A, Ferreira A (2007) Comparative evaluation of enzyme-linked immunosorbent assays based on crude and recombinant leishmanial antigens for serodiagnosis of symptomatic and asymptomatic Leishmania infantum visceral infections in dogs. Clin Vacc Immunol 14: 544–548. doi: 10.1128/cvi.00420-06
[28]
Maia C, Campino L (2008) Methods for diagnosis of canine leishmaniasis and immune response to infection. Vet Parasitol 158: 274–287. doi: 10.1016/j.vetpar.2008.07.028
[29]
Candido TC, Perri SH, Gerzoschkwitz T, Luvizotto MC, Lima VM (2008) Comparative evaluation of enzyme-linked immunosorbent assay based on crude and purified antigen in the diagnosis of canine visceral leishmaniasis in symptomatic and oligosymptomatic dogs. Vet Parasitol 157: 175–181. doi: 10.1016/j.vetpar.2008.08.010
[30]
Pinheiro PH, Pinheiro AN, Ferreira JHL, Costa FA, Katz S, et al. (2009) A recombinant cysteine proteinase from Leishmania (Leishmania) chagasi as an antigen for delayed-type hypersensitivity assays and serodiagnosis of canine visceral leishmaniasis. Vet Parasitol 162: 32–39. doi: 10.1016/j.vetpar.2009.02.011
[31]
Mettler M, Grimm F, Capelli G, Camp H, Deplazes P (2005) Evaluation of enzyme-Linked immunosorbent assays, an immunofluorescent-antibody test, and two rapid tests (immunochromatographic-dipstick and gel tests) for serological diagnosis of symptomatic and asymptomatic Leishmania infections in dogs. J Clin Microbiol 43(11): 5515–5519. doi: 10.1128/JCM.43.11.5515-5519.2005
[32]
Machado-Coelho GL, Silva MV, Souza DM, Araújo AP, Ferreira WR, et al. (2005) Reprodutibilidade do diagnóstico sorológico da Leishmaniose Visceral Canina utilizando a rea??o de ELISA em sangue dessecado em papel de filtro. XXXI Reuni?o Anual de Pesquisa Aplicada em Doen?as de Chagas e Leishmanioses, Uberaba, Minas Gerais, Brasil.
[33]
Lira RA, Cavalcanti MP, Nakazawa M, Ferreira AGP, Silva ED, et al. (2006) Canine visceral leishmaniosis: A comparative analysis of the EIE-leishmaniose-visceral-canina-Bio-Man?guinhosand the IFI-leishmaniose-visceral-canina-Bio-Man?guinhoskits. Vet Parasitol 137: 11–16. doi: 10.1016/j.vetpar.2005.12.020
[34]
Quinnell RJ, Courtenay O, Davidson S, Garcez L, Lambson B, et al. (2001) Detection of Leishmania infantum by PCR, serology and immune response in a cohort study of Brazilian dogs. Parasitology 122: 253–261. doi: 10.1017/S0031182001007363
[35]
Reithinger R, Quinnell RJ, Alexander B, Davies CR (2002) Rapid detection of Leishmania infantum infection in dogs: comparative study using an immunochromatographic dipstick test, enzyme-linked immunosorbent assay, and PCR. J Clin Microbiol 40: 2352–2356. doi: 10.1128/JCM.40.7.2352-2356.2002
[36]
Dye C, Vidor E, Dereure J (1993) Serological diagnosis of leishmaniasis: on detecting infection as well as disease. Epidemiol and Infect 103: 647–656. doi: 10.1017/S0950268800051074
[37]
Rosário EY, Genaro O, Fran?a-Silva JC, da Costa RT, Mayrink W, et al. (2005) Evaluation of enzyme-linked immunosorbent assay using crude Leishmania and recombinant antigens as a diagnostic marker for canine visceral leishmaniasis. Mem Inst Oswaldo Cruz 100: 197–203. doi: /S0074-02762005000200015
[38]
Romero HD, Silva L, Silva-Vergara M, Rodrigues V, Costa RT, et al. (2009) Comparative study of serologic tests for the diagnosis of asymptomatic visceral leishmaniasis in an endemic area. Am J Trop Med Hyg 81: 27–33.
[39]
Dantas-Torres F (2007) The role of dogs as reservoirs of Leishmania parasites, with emphasis on Leishmania (Leishmania) infantum and Leishmania (Viannia) braziliensis. Vet Parasitol 149: 139–146. doi: 10.1016/j.vetpar.2007.07.007
[40]
Brand?o-Filho SP, Brito ME, Carvalho FG, Ishikawa EA, Cupolillo E, et al. (2003) Wild and synanthropic hosts of Leishmania (Viannia) braziliensis in the endemic cutaneous leishmaniasis locality of Amaraji, Pernambuco State, Brazil. Trans R Soc Trop Med Hyg 97: 291–296. doi: 10.1016/S0035-9203(03)90146-5
[41]
Ajdary S, Alimohammadian MH, Eslami MB, Kemp K, Kharazmi A (2000) Comparison of the immune profile of nonhealing cutaneous leishmaniasis patients with those with active lesions and those who have recovered from infection. Infect and Immun 68: 1760–1764. doi: 10.1128/IAI.68.4.1760-1764.2000
[42]
Castro EA, Thomaz-Soccol V, Augur C, Luz E (2007) Leishmania (Viannia) braziliensis: epidemiology of canine cutaneous leishmaniasis in the state of Paraná (Brazil). Exp Parasitol 117: 13–21. doi: 10.1016/j.exppara.2007.03.003
[43]
Falavigna-Guilherme AL, Santana R, Pavanelli GC, Lorosa ES, Araújo SM (2004) Triatomine infestation and vector-borne transmission of Chagas disease in northwest and central Paraná, Brazil. Cad Saude Publica 20: 1191–1200. doi: /S0102-311X2004000500012
[44]
Boarino A, Scalone A, Gradoni L, Ferroglio E, Vitale F, et al. (2005) Development of recombinant chimeric antigen expressing immunodominant B epitopes of Leishmania infantum for serodiagnosis of visceral leishmaniasis. Clin Diag Lab Immun 12: 647–653. doi: 10.1128/cdli.12.5.647-653.2005
[45]
Wang Y, Li X, Wang G, Yin H, Cai X, et al. (2011) Development of an immunochromatographic strip for the rapid detection of Toxoplasma gondii circulating antigens. Parasitol Int 60: 105–107. doi: 10.1016/j.parint.2010.11.002
[46]
Li Y, Hou L, Ye J, Liu X, Dan H, et al. (2010) Development of a convenient immunochromatographic strip for the diagnosis of infection with Japanese encephalitis virus in swine. J Virol Meth 168: 51–56. doi: 10.1016/j.jviromet.2010.04.015
[47]
Zhang J, Guo Y, Xiao Y, Li Z, Hu S, et al. (2010) A simple and rapid strip test for detection of antibodies to avian infectious bronchitis virus. J Vet Med Sci 72: 883–886. doi: 10.1292/jvms.09-0528