全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Imaginal Discs – A New Source of Chromosomes for Genome Mapping of the Yellow Fever Mosquito Aedes aegypti

DOI: 10.1371/journal.pntd.0001335

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The mosquito Aedes aegypti is the primary global vector for dengue and yellow fever viruses. Sequencing of the Ae. aegypti genome has stimulated research in vector biology and insect genomics. However, the current genome assembly is highly fragmented with only ~31% of the genome being assigned to chromosomes. A lack of a reliable source of chromosomes for physical mapping has been a major impediment to improving the genome assembly of Ae. aegypti. Methodology/Principal Findings In this study we demonstrate the utility of mitotic chromosomes from imaginal discs of 4th instar larva for cytogenetic studies of Ae. aegypti. High numbers of mitotic divisions on each slide preparation, large sizes, and reproducible banding patterns of the individual chromosomes simplify cytogenetic procedures. Based on the banding structure of the chromosomes, we have developed idiograms for each of the three Ae. aegypti chromosomes and placed 10 BAC clones and a 18S rDNA probe to precise chromosomal positions. Conclusion The study identified imaginal discs of 4th instar larva as a superior source of mitotic chromosomes for Ae. aegypti. The proposed approach allows precise mapping of DNA probes to the chromosomal positions and can be utilized for obtaining a high-quality genome assembly of the yellow fever mosquito.

References

[1]  Tolle MA (2009) Mosquito-borne diseases. Curr Probl Pediatr Adolesc Health Care 39: 97–140. doi: 10.1016/j.cppeds.2009.01.001
[2]  WHO (2002) Dengue and dengue haemorrhagic fever. Fact sheet No. 117 p.
[3]  Gould EA, Solomon T (2008) Pathogenic flaviviruses. Lancet 371: 500–509. doi: 10.1016/S0140-6736(08)60238-X
[4]  Mackenzie JS, Gubler DJ, Petersen LR (2004) Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 10: S98–109. doi: 10.1038/nm1144
[5]  Halstead SB, Suaya JA, Shepard DS (2007) The burden of dengue infection. Lancet 369: 1410–1411. doi: 10.1016/S0140-6736(07)60645-X
[6]  Mairuhu AT, Wagenaar J, Brandjes DP, van Gorp EC (2004) Dengue: an arthropod-borne disease of global importance. Eur J Clin Microbiol Infect Dis 23: 425–433. doi: 10.1007/s10096-004-1145-1
[7]  Burattini MN, Chen M, Chow A, Coutinho FA, Goh KT, et al. (2008) Modeling the control strategies against dengue in Singapore. Epidemiol Infect 136: 309–319. doi: 10.1017/S0950268807008667
[8]  Morens DM, Fauci AS (2008) Dengue and hemorrhagic fever: a potential threat to public health in the United States. Jama 299: 214–216. doi: 10.1001/jama.2007.31-a
[9]  Barrett AD, Higgs S (2007) Yellow fever: a disease that has yet to be conquered. Annu Rev Entomol 52: 209–229. doi: 10.1146/annurev.ento.52.110405.091454
[10]  Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, et al. (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298: 129–149. doi: 10.1126/science.1076181
[11]  Nene V, Wortman JR, Lawson D, Haas B, Kodira C, et al. (2007) Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316: 1718–1723. doi: 10.1126/science.1138878
[12]  Arensburger P, Megy K, Waterhouse RM, Abrudan J, Amedeo P, et al. (2010) Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science 330: 86–88. doi: 10.1126/science.1191864
[13]  Severson DW (2008) Mosquitoes. In: Kole C, Hunter W, editors. Genome Mapping and Genomics in Animals. Berlin Heidelberg: Springer-Verlag. pp. 69–91.
[14]  Sharma GP, Mittal OP, Chaudhry S, Pal V (1978) A preliminary map of the salivary gland chromosomes of Aedes (Stegomyia) aegypti (Culicadae, Diptera). Cytobios 22: 169–178.
[15]  Campos J, Andrade CF, Recco-Pimentel SM (2003) A technique for preparing polytene chromosomes from Aedes aegypti (Diptera, Culicinae). Mem Inst Oswaldo Cruz 98: 387–390. doi: 10.1590/S0074-02762003000300017
[16]  Brown SE, Menninger J, Difillipantonio M, Beaty BJ, Ward DC, et al. (1995) Toward a physical map of Aedes aegypti. Insect Mol Biol 4: 161–167. doi: 10.1111/j.1365-2583.1995.tb00021.x
[17]  Daniel A (1985) The size of prometaphase chromosome segments. Clinical Genetics 28: 216–224. doi: 10.1111/j.1399-0004.1985.tb00389.x
[18]  Rai K (1963) A comparative study of mosquito karyotypes. Ann Entomol Soc Amer 56: 160–170.
[19]  Newton ME, Southern DI, Wood RJ (1974) X and Y chromosmes of Aedes aegypti (L.) distiguished by Giemsa C-banding. Chromosoma 49: 41–49. doi: 10.1007/BF00284986
[20]  Motara MA, Rai KS (1977) Chromosmal differentiation in two species of Aedes and their hybrids revealed by Giemsa C-banding. Chromosoma 64: 125–132. doi: 10.1007/bf00327052
[21]  McDonald PT, Rai KS (1970) Correlation of linkage groups with chromosomes in the mosquito Aedes aegypti. Genetics 66: 475–485.
[22]  Motara MA, Pathak S, Satya-Prakash KL, Hsu TC (1985) Argentophilic structures of spermatogenesis in the yellow fever mosquito J Hered 76: 295–300.
[23]  Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric possions on chromosomes. Hereditas 52: 201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x
[24]  McClelland GAH (1962) Sex-linkage in Aedes aegypti. Trans roy Soc trop Med Hyg 56: 4.
[25]  Motara MA, Rai KS (1978) Giemsa C-banding patterns in Aedes (Stegomia) mosquitoes. Chromosoma 70: 51–58. doi: 10.1007/bf00292215
[26]  Wallace AJ, Newton ME (1987) Heterochromatin diversity and cyclic responses to selective silver staining in Aedes aegypti (L.). Chromosoma 95: 89–93. doi: 10.1007/BF00293847
[27]  Kumar A, Rai KS (1990) Chromosomal localization and copy number of 18S+28S ribosomal RNA genes in evolutionary diverse mosquitoes (Diptera, Culicidae). Hereditas 113: 277–289. doi: 10.1111/j.1601-5223.1990.tb00094.x
[28]  Munstermann L (1990) Linkage map for yellow fever mosquito, Aedes aegypti; O'Brein S, editor. New York: Cold Spring Harbor Laboratories, Cold Spring Harbor.
[29]  Severson DW, Mori A, Zhang Y, Christensen BM (1993) Linkage map for Aedes aegypti using restriction fragment length polymorphisms. J Hered 84: 241–247.
[30]  Antolin MF, Bosio CF, Cotton J, Sweeney W, Strand MR, et al. (1996) Intensive linkage mapping in a wasp (Bracon hebetor) and a mosquito (Aedes aegypti) with single-strand conformation polymorphism analysis of random amplified polymorphic DNA markers. Genetics 143: 1727–1738.
[31]  Fulton RE, Salasek ML, DuTeau NM, Black WCt (2001) SSCP analysis of cDNA markers provides a dense linkage map of the Aedes aegypti genome. Genetics 158: 715–726.
[32]  Severson DW, Mori A, Zhang Y, Christensen BM (1994) Chromosomal mapping of two loci affecting filarial worm susceptibility in Aedes aegypti. Insect Mol Biol 3: 67–72. doi: 10.1111/j.1365-2583.1994.tb00153.x
[33]  Severson DW, Thathy V, Mori A, Zhang Y, Christensen BM (1995) Restriction fragment length polymorphism mapping of quantitative trait loci for malaria parasite susceptibility in the mosquito Aedes aegypti. Genetics 139: 1711–1717. doi: 10.1534/genetics.105.055178
[34]  Zhong D, Menge DM, Temu EA, Chen H, Yan G (2006) Amplified fragment length polymorphism mapping of quantitative trait loci for malaria parasite susceptibility in the yellow fever mosquito Aedes aegypti. Genetics 173: 1337–1345. doi: 10.1534/genetics.105.055178
[35]  Bosio CF, Fulton RE, Salasek ML, Beaty BJ, Black WCt (2000) Quantitative trait loci that control vector competence for dengue-2 virus in the mosquito Aedes aegypti. Genetics 156: 687–698. doi: 10.1534/genetics.104.035634
[36]  Gomez-Machorro C, Bennett KE, del Lourdes Munoz M, Black WCt (2004) Quantitative trait loci affecting dengue midgut infection barriers in an advanced intercross line of Aedes aegypti. Insect Mol Biol 13: 637–648. doi: 10.1111/j.0962-1075.2004.00522.x
[37]  Brown SE, Severson DW, Smith LA, Knudson DL (2001) Integration of the Aedes aegypti mosquito genetic linkage and physical maps. Genetics 157: 1299–1305.
[38]  Sharakhova MV, Hammond MP, Lobo NF, Krzywinski J, Unger MF, et al. (2007) Update of the Anopheles gambiae PEST genome assembly. Genome Biol 8: R5. doi: 10.1186/gb-2007-8-1-r5
[39]  Rooney DE, Czepulkowski BH (1992) Human cytogenetics. A practical approach: Oxford University Press. 274 p.
[40]  Demin S, Pleskach N, Svetova M, Solovjeva L (2010) High-resolution mapping of interstitial telomeric repeats in Syrian hamster metaphase chromosomes. Cytogenetic and Genome Research 1–5. DOI:10.1159/000321676.
[41]  NIH website. Available at: http://rsb.info.nih.gov/ij/. Accessed 2011 March 10.
[42]  Zeiss website. Available at: http://www.zeiss.de. Accessed 2010 December 5.
[43]  Heiberger RM, Neuwirth E (2009) R through Exel: a spreadsheet interface for statistics, data analysis, and graphics. New York: Springer Science+Business Media. 342 p.
[44]  Dennhofer L (1968) Die speicheldrusenchromosomen der stechmucke Culex pipiens. Chromosoma 25: 365–376. doi: 10.1007/BF01183127
[45]  Akstein E (1962) The chromosomes of Aedes aegypti, and of some other species of mosquitoes. Bull Res Couns Israel 11: 146–155.
[46]  Jimenez LV, Kang BK, deBruyn B, Lovin DD, Severson DW (2004) Characterization of an Aedes aegypti bacterial artificial chromosome (BAC) library and chromosomal assignment of BAC clones for physical mapping quantitative trait loci that influence Plasmodium susceptibility. Insect Mol Biol 13: 37–44. doi: 10.1046/j.0962-1075.2004.00456.x
[47]  Shaffer LG, Slovak ML, Campbell LJ (2009) An international system for human cytogenetic nomenclature. Basel (Switzerland): Karger.
[48]  Steiniger GE, Mukherjee AB (1975) Insect chromosome banding: technique for G- and Q-banding pattern in the mosquito Aedes albopictus. Can J Genet Cytol 17: 241–244.
[49]  Hoskins RA, Smith CD, Carlson JW, Carvalho AB, Halpern A, et al. (2002) Heterochromatic sequences in a Drosophila whole-genome shotgun assembly. Genome Biol 3: RESEARCH0085. doi: 10.1186/gb-2002-3-12-research0085
[50]  Koryakov DE, Zhimulev IF, Dimitri P (2002) Cytogenetic analysis of the third chromosome heterochromatin of Drosophila melanogaster. Genetics 160: 509–517.
[51]  Corradini N, Rossi F, Verni F, Dimitri P (2003) FISH analysis of Drosophila melanogaster heterochromatin using BACs and P elements. Chromosoma 112: 26–37. doi: 10.1007/s00412-003-0241-9
[52]  Yasuhara JC, Marchetti M, Fanti L, Pimpinelli S, Wakimoto BT (2003) A strategy for mapping the heterochromatin of chromosome 2 of Drosophila melanogaster. Genetica 117: 217–226. doi: 10.1023/A:1022948229580
[53]  Rossi F, Moschetti R, Caizzi R, Corradini N, Dimitri P (2007) Cytogenetic and molecular characterization of heterochromatin gene models in Drosophila melanogaster. Genetics 175: 595–607. doi: 10.1534/genetics.106.065441
[54]  Furey TS, Haussler D (2003) Integration of the cytogenetic map with the draft human genome sequence. Hum Mol Genet 12: 1037–1044. doi: 10.1093/hmg/ddg113
[55]  Breen M, Hitte C, Lorentzen TD, Thomas R, Cadieu E, et al. (2004) An integrated 4249 marker FISH/RH map of the canine genome. BMC Genomics 5: 65. doi: 10.1186/1471-2164-5-65
[56]  Lewin HA, Larkin DM, Pontius J, O'Brien SJ (2009) Every genome sequence needs a good map. Genome Res 19: 1925–1928. doi: 10.1101/gr.094557.109

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133