全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ancient Ancestry of KFDV and AHFV Revealed by Complete Genome Analyses of Viruses Isolated from Ticks and Mammalian Hosts

DOI: 10.1371/journal.pntd.0001352

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Alkhurma hemorrhagic fever virus (AHFV) and Kyasanur forest disease virus (KFDV) cause significant human disease and mortality in Saudi Arabia and India, respectively. Despite their distinct geographic ranges, AHFV and KFDV share a remarkably high sequence identity. Given its emergence decades after KFDV, AHFV has since been considered a variant of KFDV and thought to have arisen from an introduction of KFDV to Saudi Arabia from India. To gain a better understanding of the evolutionary history of AHFV and KFDV, we analyzed the full length genomes of 16 AHFV and 3 KFDV isolates. Methodology/Principal Findings Viral genomes were sequenced and compared to two AHFV sequences available in GenBank. Sequence analyses revealed higher genetic diversity within AHFVs isolated from ticks than human AHFV isolates. A Bayesian coalescent phylogenetic analysis demonstrated an ancient divergence of AHFV and KFDV of approximately 700 years ago. Conclusions/Significance The high sequence diversity within tick populations and the presence of competent tick vectors in the surrounding regions, coupled with the recent identification of AHFV in Egypt, indicate possible viral range expansion or a larger geographic range than previously thought. The divergence of AHFV from KFDV nearly 700 years ago suggests other AHFV/KFDV-like viruses might exist in the regions between Saudi Arabia and India. Given the human morbidity and mortality associated with these viruses, these results emphasize the importance of more focused study of these significant public health threats.

References

[1]  Madani TA (2005) Alkhumra virus infection, a new viral hemorrhagic fever in Saudi Arabia. J Infect 51: 91–97. doi: 10.1016/j.jinf.2004.11.012
[2]  Memish ZA, Balkhy HH, Francis C, Cunningham G, Hajeer AH, et al. (2005) Alkhumra haemorrhagic fever: case report and infection control details. Br J Biomed Sci 62: 37–39.
[3]  Pattnaik P (2006) Kyasanur forest disease: an epidemiological view in India. Rev Med Virol 16: 151–165. doi: 10.1002/rmv.495
[4]  Pavri K (1989) Clinical, clinicopathologic and hematologic features of Kyasanur Forest disease. Reviews of Infectious Diseases 2: S854–859. doi: 10.1093/clinids/11.Supplement_4.S854
[5]  Alzahrani AG (2010) Alkhurma Hemorrhagic Fever in Humans, Najran, Saudi Arabia. Emerging Infectious Diseases. pp. 1882–88.
[6]  Zaki AM (1997) Isolation of a flavivirus related to the tick-borne encephalitis complex from human cases in Saudi Arabia. Tran R Soc Trop Med Hyg 91: 179–181. doi: 10.1016/s0035-9203(97)90215-7
[7]  Carletti F (2010) Alkhurma Hemorrhagic Fever in Travelers Returning from Egypt, 2010. Emerging Infectious Diseases. pp. 1979–82.
[8]  Charrel RN, Fagbo S, Moureau G, Alqahtani MH, Temmam S, et al. (2007) Alkhurma hemorrhagic fever virus in Ornithodoros savignyi ticks. Emerging Infectious Diseases 13: 153–155. doi: 10.3201/eid1301.061094
[9]  Mahdi M, Erickson BR, Comer JA, Nichol ST, Rollin PE, et al. (2011) Kyasanur forest disease virus alkhurma subtype in ticks, najran province, saudi arabia. Emerging Infectious Diseases 17: 945–947. doi: 10.3201/eid1705.101824
[10]  Mehla R (2009) Recent Ancestry of Kyasanur Forest Disease Virus. Emerging Infectious Diseases. pp. 1431–1437.
[11]  Charrel RN, Zaki AM, Attoui H, Fakeeh M, Billoir F, et al. (2001) Complete coding sequence of the Alkhurma virus, a tick-borne flavivirus causing severe hemorrhagic fever in humans in Saudi Arabia. Biochemical and Biophysical Research Communications 287: 455–461. doi: 10.1006/bbrc.2001.5610
[12]  Charrel RN, Zaki AM, Fakeeh M, Yousef AI, de Chesse R, et al. (2005) Low diversity of Alkhurma hemorrhagic fever virus, Saudi Arabia, 1994-1999. Emerging Infectious Diseases 11: 683–688. doi: 10.3201/eid1105.041298
[13]  Bird B, Khristova M, Rollin P, Ksiazek T, Nichol ST (2007) Complete genome analysis of 33 ecologically and biologically diverse Rift Valley fever virus strains reveals widespread virus movement and low genetic diversity due to recent common ancestry. J Virol 81: 2805–2816. doi: 10.1128/JVI.02095-06
[14]  Delport W, Poon AFY, Frost SDW, Kosakovsky Pond SL (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26: 2455–2457. doi: 10.1093/bioinformatics/btq429
[15]  Pond SLK, Frost SDW (2005) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21: 2531–2533. doi: 10.1093/bioinformatics/bti320
[16]  Pond SLK, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21: 676–679. doi: 10.1093/bioinformatics/bti079
[17]  Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817–818. doi: 10.1093/bioinformatics/14.9.817
[18]  Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4(5): e88. doi:10.1371/journal.pbio.0040088.
[19]  Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7: 214. doi: 10.1186/1471-2148-7-214
[20]  Miller S, Kastner S, Krijnse-Locker J, Bühler S, Bartenschlager R (2007) The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner. J Biol Chem 282: 8873–8882. doi: 10.1074/jbc.M609919200
[21]  Marin MS, Zanotto PM, Gritsun TS, Gould EA (1995) Phylogeny of TYU, SRE, and CFA virus: different evolutionary rates in the genus Flavivirus. Virology 206: 1133–1139. doi: 10.1006/viro.1995.1038
[22]  Ramírez A, Fajardo A, Moros Z, Gerder M, Caraballo G, et al. (2010) Evolution of Dengue Virus Type 3 Genotype III in Venezuela: Diversification, Rates and Population Dynamics. Virology Journal 7: 329. doi: 10.1186/1743-422X-7-329
[23]  Sall AA, Faye O, Diallo M, Firth C, Kitchen A, et al. (2010) Yellow fever virus exhibits slower evolutionary dynamics than dengue virus. Journal of virology 84: 765–772. doi: 10.1128/JVI.01738-09
[24]  Kovalev SY, Chernykh DN, Kokorev VS, Snitkovskaya TE, Romanenko VV (2009) Origin and distribution of tick-borne encephalitis virus strains of the Siberian subtype in the Middle Urals, the north-west of Russia and the Baltic countries. J Gen Virol 90: 2884–2892. doi: 10.1099/vir.0.012419-0
[25]  Carroll SA, Bird BH, Rollin PE, Nichol ST (2010) Ancient common ancestry of Crimean-Congo hemorrhagic fever virus. Molecular Phylogenetics and Evolution 55: 1103–1110. doi: 10.1016/j.ympev.2010.01.006
[26]  Gould EA (2004) Evolution and dispersal of encephalitic flaviviruses. Arch Virol Suppl 18: 65–84. doi: 10.1007/978-3-7091-0572-6_6
[27]  Zanotto PM, Gould EA, Gao GF, Harvey PH, Holmes EC (1996) Population dynamics of flaviviruses revealed by molecular phylogenies. Proc Natl Acad Sci USA 93: 548–553. doi: 10.1073/pnas.93.2.548
[28]  Jaaskelainen AE, Sironen T, Murueva GB, Subbotina N, Alekseev AN, et al. (2010) Tick-borne encephalitis virus in ticks in Finland, Russian Karelia and Buryatia. Journal of General Virology 91: 2706–2712. doi: 10.1099/vir.0.023663-0
[29]  Kolonin GV (1978) World distribution of ixodid ticks (genus Haemaphysalis). Moscow: Nauka. 70 p.
[30]  Bhat UKM, Goverdhan MK (1973) Transmission of Kyasanur Forest disease virus by the soft tick, Ornithodoros crossi. Acta Virol 17: 337–342.
[31]  Carpi G, Bertolotti L, Rosati S, Rizzoli A (2009) Prevalence and genetic variability of tick-borne encephalitis virus in host-seeking Ixodes ricinus in northern Italy. J Gen Virol 90: 2877–2883. doi: 10.1099/vir.0.013367-0
[32]  Waldenstr?m J, Lundkvist A, Falk KI, Garpmo U, Bergstr?m S, et al. (2007) Migrating birds and tickborne encephalitis virus. Emerging Infectious Diseases 13: 1215–1218. doi: 10.3201/eid1308.061416

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133