Background An important component of the World Health Organization's comprehensive trachoma elimination strategy is the provision of repeated annual mass azithromycin distributions, which are directed at reducing the burden of ocular chlamydia. Knowledge of characteristics associated with infection after mass antibiotic treatments could allow trachoma programs to focus resources to those most likely to be infected with ocular chlamydia. Methodology/Principal Findings We monitored 12 communities in rural Ethiopia that had received 3 annual mass azithromycin treatments as part of a cluster-randomized trial for trachoma. One year after the third treatment, a random sample of children from each village received conjunctival examination for follicular trachomatous inflammation (TF) and intense trachomatous inflammation (TI), conjunctival swabbing for chlamydial RNA and DNA, and a household survey. The primary outcome for this study was RNA evidence of ocular chlamydia, which we detected in 41 of 573 swabbed children (7.2%, 95%CI 2.7–17.8). In multivariate mixed effects logistic regression models, ocular chlamydial RNA was significantly associated with ocular discharge (OR 2.82, 95%CI 1.07–7.42), missing the most recent mass azithromycin treatment (OR 2.49, 95%CI 1.02–6.05), having a sibling with ocular chlamydia (OR 4.44, 95%CI 1.60–12.29), and above-median community population (OR 7.81, 95%CI 1.56–39.09). Ocular chlamydial infection was also independently associated with TF (OR 3.42, 95%CI 1.56–7.49) and TI (OR 5.39, 95%CI 2.43–11.98). Conclusions/Significance In areas with highly prevalent trachoma treated with multiple rounds of mass azithromycin, trachoma programs could consider continuing mass azithromycin treatments in households that have missed prior mass antibiotic treatments, in households with clinically active trachoma, and in larger communities.
References
[1]
Solomon AW, Zondervan M, Kuper H, Buchan JC, Mabey DCW, et al. (2006) Trachoma control: a guide for programme managers. Geneva: World Health Organization.
[2]
Mkocha H, Munoz B, West S (2009) Trachoma and ocular Chlamydia trachomatis rates in children in trachoma-endemic communities enrolled for at least three years in the Tanzania National Trachoma Control Programme. Tanzan J Health Res 11: 103–110. doi: 10.4314/thrb.v11i3.47694
[3]
Ngondi J, Gebre T, Shargie EB, Adamu L, Ejigsemahu Y, et al. (2009) Evaluation of three years of the SAFE strategy (Surgery, Antibiotics, Facial cleanliness and Environmental improvement) for trachoma control in five districts of Ethiopia hyperendemic for trachoma. Trans R Soc Trop Med Hyg 103: 1001–1010. doi: 10.1016/j.trstmh.2008.11.023
[4]
Lakew T, House J, Hong KC, Yi E, Alemayehu W, et al. (2009) Reduction and return of infectious trachoma in severely affected communities in ethiopia. PLoS Negl Trop Dis 3: e376. doi: 10.1371/journal.pntd.0000376
[5]
Burton MJ, Holland MJ, Makalo P, Aryee EA, Alexander ND, et al. (2005) Re-emergence of Chlamydia trachomatis infection after mass antibiotic treatment of a trachoma-endemic Gambian community: a longitudinal study. Lancet 365: 1321–1328. doi: 10.1016/S0140-6736(05)61029-X
[6]
Gebre T, Ayele B, Zerihun M, Genet A, Stoller NE, et al. (Submitted) A cluster-randomized clinical trial comparing annual to twice-yearly azithromycin treatment for hyperendemic infectious trachoma in Ethiopia.
[7]
Keenan JD, Ayele B, Moncada J, Gebre T, House JI, et al. (Submitted) rRNA evidence of ocular Chlamydia trachomatis infection following three annual mass azithromycin distributions in communities with highly prevalent trachoma.
[8]
Thylefors B, Dawson CR, Jones BR, West SK, Taylor HR (1987) A simple system for the assessment of trachoma and its complications. Bull World Health Organ 65: 477–483.
[9]
Chernesky M, Jang D, Portillo E, Chong S, Smieja M, et al. (2007) Abilities of APTIMA, AMPLICOR, and ProbeTec assays to detect Chlamydia trachomatis and Neisseria gonorrhoeae in PreservCyt ThinPrep Liquid-based Pap samples. Journal of Clinical Microbiology 45: 2355–2358. doi: 10.1128/JCM.00405-07
[10]
Schachter J, Hook EW, Martin DH, Willis D, Fine P, et al. (2005) Confirming positive results of nucleic acid amplification tests (NAATs) for Chlamydia trachomatis: all NAATs are not created equal. J Clin Microbiol 43: 1372–1373. doi: 10.1128/JCM.43.3.1372-1373.2005
[11]
Heinze G, Schemper M (2002) A solution to the problem of separation in logistic regression. Stat Med 21: 2409–2419. doi: 10.1002/sim.1047
[12]
West SK, Rapoza P, Munoz B, Katala S, Taylor HR (1991) Epidemiology of ocular chlamydial infection in a trachoma-hyperendemic area. J Infect Dis 163: 752–756. doi: 10.1093/infdis/163.4.752
[13]
Abdou A, Nassirou B, Kadri B, Moussa F, Munoz BE, et al. (2007) Prevalence and risk factors for trachoma and ocular Chlamydia trachomatis infection in Niger. Br J Ophthalmol 91: 13–17. doi: 10.1136/bjo.2006.099507
[14]
Edwards T, Harding-Esch EM, Hailu G, Andreason A, Mabey DC, et al. (2008) Risk factors for active trachoma and Chlamydia trachomatis infection in rural Ethiopia after mass treatment with azithromycin. Trop Med Int Health 13: 556–565. doi: 10.1111/j.1365-3156.2008.02034.x
[15]
Cajas-Monson LC, Mkocha H, Munoz B, Quinn TC, Gaydos CA, et al. (2011) Risk factors for ocular infection with Chlamydia trachomatis in children 6 months following mass treatment in Tanzania. PLoS Negl Trop Dis 5: e978. doi: 10.1371/journal.pntd.0000978
[16]
King JD, Ngondi J, Kasten J, Diallo MO, Zhu H, et al. (2011) Randomised trial of face-washing to develop a standard definition of a clean face for monitoring trachoma control programmes. Trans R Soc Trop Med Hyg 105: 7–16. doi: 10.1016/j.trstmh.2010.09.008
[17]
Ray KJ, Porco TC, Hong KC, Lee DC, Alemayehu W, et al. (2007) A rationale for continuing mass antibiotic distributions for trachoma. BMC Infect Dis 7: 91. doi: 10.1186/1471-2334-7-91
[18]
Bailey RL, Hayes L, Pickett M, Whittle HC, Ward ME, et al. (1994) Molecular epidemiology of trachoma in a Gambian village. Br J Ophthalmol 78: 813–817. doi: 10.1136/bjo.78.11.813
[19]
Burton MJ, Holland MJ, Faal N, Aryee EA, Alexander ND, et al. (2003) Which members of a community need antibiotics to control trachoma? Conjunctival Chlamydia trachomatis infection load in Gambian villages. Invest Ophthalmol Vis Sci 44: 4215–4222. doi: 10.1167/iovs.03-0107
[20]
Broman AT, Shum K, Munoz B, Duncan DD, West SK (2006) Spatial clustering of ocular chlamydial infection over time following treatment, among households in a village in Tanzania. Invest Ophthalmol Vis Sci 47: 99–104. doi: 10.1167/iovs.05-0326
[21]
World Health Organization (1993) Primary Health Care Level Management of Trachoma (WHO/PBL/93.33). Geneva: World Health Organization.
[22]
World Health Organization (2011) Report of the Fifteenth Meeting of the WHO Alliance for the Elimination of Blinding Trachoma by 2020.
[23]
Shah NA, House J, Lakew T, Alemayehu W, Halfpenny C, et al. (2010) Travel and implications for the elimination of trachoma in ethiopia. Ophthalmic Epidemiol 17: 113–117. doi: 10.3109/09286581003624921
[24]
West SK, Congdon N, Katala S, Mele L (1991) Facial cleanliness and risk of trachoma in families. Arch Ophthalmol 109: 855–857. doi: 10.1001/archopht.1991.01080060119038
[25]
Taylor HR, West SK, Mmbaga BB, Katala SJ, Turner V, et al. (1989) Hygiene factors and increased risk of trachoma in central Tanzania. Arch Ophthalmol 107: 1821–1825. doi: 10.1001/archopht.1989.01070020903037
[26]
West SK, Munoz B, Lynch M, Kayongoya A, Mmbaga BB, et al. (1996) Risk factors for constant, severe trachoma among preschool children in Kongwa, Tanzania. Am J Epidemiol 143: 73–78. doi: 10.1093/oxfordjournals.aje.a008659
[27]
Schemann JF, Sacko D, Malvy D, Momo G, Traore L, et al. (2002) Risk factors for trachoma in Mali. Int J Epidemiol 31: 194–201. doi: 10.1093/ije/31.1.194
[28]
Ngondi J, Matthews F, Reacher M, Onsarigo A, Matende I, et al. (2007) Prevalence of risk factors and severity of active trachoma in southern Sudan: an ordinal analysis. Am J Trop Med Hyg 77: 126–132.
[29]
Ngondi J, Gebre T, Shargie EB, Graves PM, Ejigsemahu Y, et al. (2008) Risk factors for active trachoma in children and trichiasis in adults: a household survey in Amhara Regional State, Ethiopia. Trans R Soc Trop Med Hyg 102: 432–438. doi: 10.1016/j.trstmh.2008.02.014
[30]
Brechner RJ, West S, Lynch M (1992) Trachoma and flies. Individual vs environmental risk factors. Arch Ophthalmol 110: 687–689. doi: 10.1001/archopht.1992.01080170109035
[31]
Taylor HR (1988) A simple method for assessment of association between synanthropic flies and trachoma. Am J Trop Med Hyg 38: 623–627.
[32]
Tielsch JM, West KP Jr, Katz J, Keyvan-Larijani E, Tizazu T, et al. (1988) The epidemiology of trachoma in southern Malawi. Am J Trop Med Hyg 38: 393–399.
[33]
West S, Lynch M, Turner V, Munoz B, Rapoza P, et al. (1989) Water availability and trachoma. Bull World Health Organ 67: 71–75.
[34]
Zerihun N (1997) Trachoma in Jimma zone, south western Ethiopia. Trop Med Int Health 2: 1115–1121. doi: 10.1046/j.1365-3156.1997.d01-211.x
[35]
Hoechsmann A, Metcalfe N, Kanjaloti S, Godia H, Mtambo O, et al. (2001) Reduction of trachoma in the absence of antibiotic treatment: evidence from a population-based survey in Malawi. Ophthalmic Epidemiol 8: 145–153. doi: 10.1076/opep.8.2.145.4169
[36]
Baggaley RF, Solomon AW, Kuper H, Polack S, Massae PA, et al. (2006) Distance to water source and altitude in relation to active trachoma in Rombo district, Tanzania. Trop Med Int Health 11: 220–227. doi: 10.1111/j.1365-3156.2005.01553.x
[37]
Courtright P, Sheppard J, Lane S, Sadek A, Schachter J, et al. (1991) Latrine ownership as a protective factor in inflammatory trachoma in Egypt. Br J Ophthalmol 75: 322–325. doi: 10.1136/bjo.75.6.322
[38]
Luna EJ, Medina NH, Oliveira MB, de Barros OM, Vranjac A, et al. (1992) Epidemiology of trachoma in Bebedouro State of Sao Paulo, Brazil: prevalence and risk factors. Int J Epidemiol 21: 169–177. doi: 10.1093/ije/21.1.169
[39]
Cumberland P, Hailu G, Todd J (2005) Active trachoma in children aged three to nine years in rural communities in Ethiopia: prevalence, indicators and risk factors. Trans R Soc Trop Med Hyg 99: 120–127. doi: 10.1016/j.trstmh.2004.03.011
[40]
Ngondi J, Matthews F, Reacher M, Baba S, Brayne C, et al. (2008) Associations between Active Trachoma and Community Intervention with Antibiotics, Facial Cleanliness, and Environmental Improvement (A,F,E). PLoS Negl Trop Dis 2: e229. doi: 10.1371/journal.pntd.0000229
[41]
Ngondi J, Gebre T, Shargie EB, Adamu L, Teferi T, et al. (2010) Estimation of effects of community intervention with antibiotics, facial cleanliness, and environmental improvement (A,F,E) in five districts of Ethiopia hyperendemic for trachoma. Br J Ophthalmol 94: 278–281. doi: 10.1136/bjo.2009.168260
[42]
West SK, Munoz B, Turner VM, Mmbaga BB, Taylor HR (1991) The epidemiology of trachoma in central Tanzania. Int J Epidemiol 20: 1088–1092. doi: 10.1093/ije/20.4.1088
[43]
Michel CE, Roper KG, Divena MA, Lee HH, Taylor HR (2011) Correlation of clinical trachoma and infection in Aboriginal communities. PLoS Negl Trop Dis 5: e986. doi: 10.1371/journal.pntd.0000986
[44]
Bird M, Dawson CR, Schachter JS, Miao Y, Shama A, et al. (2003) Does the diagnosis of trachoma adequately identify ocular chlamydial infection in trachoma-endemic areas? J Infect Dis 187: 1669–1673. doi: 10.1086/374743
[45]
Wright HR, Taylor HR (2005) Clinical examination and laboratory tests for estimation of trachoma prevalence in a remote setting: what are they really telling us? Lancet Infect Dis 5: 313–320. doi: 10.1016/S1473-3099(05)70116-X
[46]
Taylor HR, Siler JA, Mkocha HA, Munoz B, West S (1992) The natural history of endemic trachoma: a longitudinal study. Am J Trop Med Hyg 46: 552–559.
[47]
Keenan JD, Lakew T, Alemayehu W, Melese M, House JI, et al. (2011) Slow resolution of clinically active trachoma following successful mass antibiotic treatments. Arch Ophthalmol 129: 512–513. doi: 10.1001/archophthalmol.2011.46