%0 Journal Article %T 多项式环上的n-Gorenstein投射模
n-Gorenstein Projective Modules over Polynomial Rings %A 李夏妍 %J Pure Mathematics %P 29-35 %@ 2160-7605 %D 2025 %I Hans Publishing %R 10.12677/PM.2025.156186 %X 设n是一个正整数,R是环,本文讨论了多项式环上的n-Gorenstein投射模和n-Gorenstein内射模的结构。证明了若(Y,f)是n-Gorenstein投射左R[x]-模,则f是单同态,coker f是(n-1)-Gorenstein~投射左R-模;对偶地,(Y,f)是n-Gorenstein内射左R[x]-模,则f是满同态,Ker f是(n-1)-Gorenstein~内射左R-模。
Let n be a positive integer and R be a ring. In this paper,n-Gorenstein projective modules and n-Gorenstein injective modules over polynomial rings were introduced.It is proved that if (Y,f) is an n-Gorenstein projective left R[x]-module, then f is a monomorphism and coker f is (n-1)-Gorenstein projective left R-module. Dually, if (Y,f) is an n-Gorenstein injective left R[x]-module, then f is an epimorphism and Ker f is (n-1)-Gorenstein injective left R-module. %K n-Gorenstein投射模 %K n-Gorenstein内射模 %K 多项式环
n-Gorenstein Projective Module %K n-Gorenstein Injective Module %K Polynomial Ring %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=117737