%0 Journal Article %T 最大密度限制下可压欧拉方程高阶精度数值格式的耗散测度值解
Dissipative Measure-Valued Solutions of High Order Numerical Schemes for Compressible Euler Equations with Maximum Density Constraints %A 皇晓燕 %A 华嘉乐 %J Pure Mathematics %P 241-254 %@ 2160-7605 %D 2025 %I Hans Publishing %R 10.12677/PM.2025.155173 %X 本文主要考虑带有最大密度限制的可压欧拉方程组的初边值问题,这种密度限制依据一个奇性压强给出。文章通过引入带有截断参数δ>0的近似压强pδ,并建立合适的先验估计,得到了欧拉方程数值格式与其原方程的一致性公式。同时,研究了δ→0时的极限,证明数值解可以收敛到耗散测度值解。
This paper primarily focuses on the initial-boundary value problem of the compressible Euler equations with a maximum density constraint, where the density constraint is given by a singular pressure. By introducing an approximate pressure pδ(p) with a truncation parameterδ>0. and establishing appropriate the priori estimates, the paper derives the consistency formulas between the numerical schemes of the Euler equations and the original equations. Moreover, the limit as δ→0 is investigated, and it is proven that the numerical solutions can converge to dissipative measure-valued solutions. %K 可压欧拉方程,耗散测度值解,高阶精度,最大密度限制
Compressible Euler System %K Dissipative Measure-Valued Solution %K High Order Accuracy %K Maximum Density Constraint %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=115862