%0 Journal Article %T 正交曲线坐标系中三维不可压粘性MHD系统的大初值整体适定性
Global Well-Posedness of the Three-Dimensional Incompressible Viscous MHD System in Orthogonal Curvilinear Coordinates with Large Initial Data %A 袁桂芳 %J Advances in Applied Mathematics %P 162-174 %@ 2324-8009 %D 2025 %I Hans Publishing %R 10.12677/aam.2025.145245 %X 本文研究了正交曲线坐标系中三维不可压MHD系统在大光滑初值条件下的整体适定性。我们针对一类新的光滑大初值,建立了三维不可压粘性MHD系统Cauchy问题在正交曲线坐标系下的整体光滑解的存在性和唯一性。
This paper investigates the global well-posedness of the three-dimensional incompressible MHD system in orthogonal curvilinear coordinates with large smooth initial data. We establish the global existence and uniqueness of the smooth solutions to the Cauchy problem for the three-dimensional incompressible viscous MHD system in orthogonal curvilinear coordinates for a new class of the smooth large initial data. %K 整体适定性, %K 三维不可压MHD系统, %K 正交曲线坐标系, %K 光滑解
Global Well-Posedness %K Three-Dimensional Incompressible MHD System %K Orthogonal Curvilinear Coordinates %K Smooth Solution %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=114422