%0 Journal Article %T 加权多元Paley-Wiener空间在概率框架和平均框架下的Kolmogorov n-宽度
Kolmogorov n-Width of Weighted Multivariate Paley-Wiener Spaces in Probability and Average Settings %A 罗莹 %J Advances in Applied Mathematics %P 981-994 %@ 2324-8009 %D 2025 %I Hans Publishing %R 10.12677/aam.2025.144221 %X 加权多元Paley-Wiener空间不仅在通讯、信息处理、数据压缩等方面有广泛应用,而且也是逼近定义在 上的函数类的重要工具,因而得到广泛的深入研究。本文研究加权多元Paley-Wiener空间在概率框架和平均框架下的逼近特征,特别地,利用离散化的方法估计了在概率框架和平均框架下,加权多元Paley-Wiener空间的Kolmogorov n-宽度的精确渐进阶。
Weighted multivariate Paley-Wiener spaces have wide applications in communication, information processing, data compression, and other fields. They are also important tools for approximating classes of functions defined on , and thus have been extensively studied. This paper studies the approximation characteristics of weighted multivariate Paley-Wiener spaces in probability and average settings. In particular, by using discretization methods, the paper estimates the exact asymptotic order of the Kolmogorov n-width of weighted multivariate Paley-Wiener spaces in the probability and average settings. %K 加权多元Paley-Wiener空间, %K 概率框架, %K 平均框架, %K 渐近阶
Weighted Multivariate Paley-Wiener Space %K Probability Setting %K Average Setting %K Asymptotic Order %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=113395