%0 Journal Article %T 基于信息扩大集合和自适应特征融合的遥感目标检测
Remote Sensing Target Detection Based on Information Expansion Collection and Adaptive Feature Fusion %A 王文聪 %A 张孙杰 %J Software Engineering and Applications %P 484-498 %@ 2325-2278 %D 2025 %I Hans Publishing %R 10.12677/sea.2025.142043 %X 在现有方法的基础上,本文提出了一种新颖的信息扩大集合和自适应特征融合的检测算法。文中在主干网络部分引入ConvNeXt模块来加强对被遮蔽目标的检测能力,提出了信息扩大集合模块来充分地利用图像中的上下文信息,优化对长宽比较大目标的检测效果。使用协调注意力模块来防止目标位置信息的丢失,通过挤压与激励模块对通道重新进行权重分配,挑选出重要性较高的通道进行计算。文中还使用自适应空间特征融合模块,对不同层级的特征图进行融合来保证金字塔的效果。在DOTA-v1.5遥感数据集上,相较于原始网络,文中方法mAP@0.5性能提升了2.5个百分点。在另外的2个数据集上,本文提出的算法也取得了更好的检测性能。
On the basis of existing methods, this paper proposes a novel detection algorithm based on Information Expansion Collection and Adaptive Feature Fusion. The ConvNeXt module is introduced in the backbone network part to enhance the detection ability of occluded targets; the Information Expansion Collection module is proposed to fully utilize the contextual information in the image to optimize the detection effect of targets with large aspect ratio; and the Coordinated Attention module is used to prevent the loss of target position information. The Squeezing and Excitation module is used to re-assign weights to the channels and select the channels with higher importance for computation; the Adaptive Spatial Feature Fusion module is used to fuse the feature maps of different layers to ensure the effect of pyramid. Finally, on the DOTA-v1.5 remote sensing dataset, compared with the original network, the mAP@0.5 performance improvement of 2.5% was obtained. The algorithm proposed in this paper also achieved better detection performance compared to the current state-of-the-art detection algorithms on the other 2 datasets. %K 遥感目标检测, %K 多尺度特征, %K 上下文信息提取, %K 注意力机制, %K YOLO, %K 小目标检测, %K 特征融合
Remote Sensing Target Detection %K Multi-Scale Feature %K Contextual Information Extraction %K Attention Mechanisms %K YOLO %K Small Target Detection %K Feature Fusion %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=113351