%0 Journal Article %T Fock-Sobolev空间上的复对称加权复合算子
Complex Symmetric Weighted Composition Operators on the Fock-Sobolev Spaces %A 喻思琦 %J Pure Mathematics %P 76-83 %@ 2160-7605 %D 2025 %I Hans Publishing %R 10.12677/pm.2025.154111 %X 伴随不同函数空间上的复对称加权复合算子得到广泛关注,本文致力于研究Fock-Sobolev空间上的复对称加权复合算子 φ C τ 。通过引入复对称算子的概念,运用混合偏导相关公式、分类讨论、数学归纳、反证等方法,得到了 φ( z ) 恒不为零以及 φ C τ 的核空间只含零向量,得到了 φ C τ 的特征值都可表示为 φ( κ ) ( 1 τ ) n ( κ ) 形式以及其点谱的具体表达式,并给出了乘法算子 φ 和复合算子 τ 关于共轭算子和再生核函数的关系式。这些发现深化了对Fock-Sobolev空间上的复对称加权复合算子的理解,也为其他函数空间上复对称加权复合算子的研究奠定了理论基础。
Complex symmetric weighted composition operators on different function spaces are widely concerned. In this paper, we study complex symmetric weighted composition operators on Fock-Sobolev spaces. By introducing the concept of complex symmetric operator, using the correlation formula of mixed partial derivative, classification discussion, mathematical induction, inverse proof and other methods, we get φ( z ) is always non-zero and the kernel space of φ C τ only contains zero vector, get the eigenvalues of φ C τ %K Fock-Sobolev空间, %K 加权复合算子, %K 复对称性
Fock-Sobolev Space %K Weighted Composite Operator %K Complex Symmetry %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=111193