%0 Journal Article %T 基于大数据的网络空间资产探测系统
Big Data-Based Cyberspace Asset Detection System %A 陈明昊 %A 徐亚峰 %A 李琳 %A 王铭砾 %A 姬懿轩 %J Computer Science and Application %P 170-179 %@ 2161-881X %D 2025 %I Hans Publishing %R 10.12677/csa.2025.153069 %X 随着网络空间规模的不断扩展以及网络攻击技术的日益复杂化,如何高效地识别、整理和分析网络资产成为网络安全领域的重要研究方向。本文提出了一种基于大数据技术的网络空间资产探测系统,涵盖子域名扫描与活跃性测试、URL资产整理与去重、IP识别、指纹扫描及智能辅助分析等功能模块。系统采用分布式存储和高性能计算技术,以布隆过滤器优化数据去重流程,提升探测效率与精度。实验表明,该系统能够在大规模网络资产探测中实现快速、准确的分析,适用于动态复杂的网络环境。
As cyberspace continues to expand and cyberattacks become increasingly sophisticated, efficiently identifying, organizing, and analyzing cyber assets has become a critical research focus in the field of cybersecurity. This paper proposes and implements a big data-based cyberspace asset detection system that incorporates modules for subdomain scanning, URL asset processing, IP detection, fingerprint recognition, and intelligent analysis. Leveraging distributed storage and high-performance algorithms such as Bloom filters, the system improves detection accuracy and efficiency. Experimental results demonstrate the system’s capability to perform rapid and accurate asset analysis in large-scale network environments, making it suitable for dynamic and complex scenarios. %K 网络空间资产探测, %K 大数据技术, %K 布隆过滤器, %K 指纹识别, %K 网络安全
Cyberspace Asset Detection %K Big Data Technology %K Bloom Filter %K Fingerprint Recognition %K Cybersecurity %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=110236