%0 Journal Article %T 一类凸曲线流在Ros等周不等式中的应用
The Application of a Kind of Convex Curve Flows to Rose Isoperimetric Inequalities %A 陈晓 %J Pure Mathematics %P 56-62 %@ 2160-7605 %D 2025 %I Hans Publishing %R 10.12677/pm.2025.153076 %X 通过平面中一类面积非减的凸曲线流,曲线在发展过程中保持凸性不变,具有全局存在性,且当时间趋于无穷大时,曲线在C0范数下收敛到圆。我们建立该曲线流的单调公式,给出了平面上Ros等周不等式新的证明。
By convex curve flow with non-decreasing area in the plane, the curve remains convex and exists globally, and the evolving curve converges to a circle as the time goes to infinity. A new proof of the plane Rose isoperimetric inequalities is given by establishing the monotone formulas along the curve flow. %K 凸曲线流, %K Ros等周不等式, %K 单调公式
Convex Curve Flow %K Ros Isoperimetric Inequalities %K Monotone Formulas %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=109042