%0 Journal Article %T Z4上一类四元广义分圆序列的线性复杂度
Linear Complexity of a Class of Quaternary Sequence Generated by Generalized Cyclotomic Class over Z4 %A 邹蒙 %A 赵璐 %J Pure Mathematics %P 33-38 %@ 2160-7605 %D 2025 %I Hans Publishing %R 10.12677/pm.2025.152043 %X 序列的线性复杂度与序列的安全性息息相关。本文利用Galois理论,研究了一类在有限域F4上具有较高线性复杂度的四元序列,得到了其在Galois环Z4上的线性复杂度的确切值。结果显示,这类序列在Galois环Z4上也具有较高的线性复杂度,可以较好地抵抗Reeds-Sloane算法的攻击。
The linear complexity of a sequence is closely related to its cryptographic security. In this paper, we employ Galois theory to investigate a class of quaternary sequence over the finite field F4 with high linear complexity, and determine the exact value of its linear complexity over the Galois ring Z4. The results demonstrate that such sequence maintain relatively high linear complexity in the Galois ring Z4, thereby exhibiting strong resistance against attacks by the Reeds-Sloane algorithm. %K 四元序列, %K 线性复杂度, %K 分圆序列, %K Galois环
Quaternary Sequence %K Linear Complexity %K Cyclotomic Sequence %K Galois Ring %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=107426