%0 Journal Article %T Gd含量对Mg-1.5Zn-xGd合金组织与性能的影响
Effect of Gd Content on Microstructure and Properties of Mg-1.5Zn-xGd Alloy %A 袁蒙 %A 葛淑萍 %A 刘文君 %J Material Sciences %P 257-265 %@ 2160-7621 %D 2025 %I Hans Publishing %R 10.12677/ms.2025.152030 %X 在镁合金中添加稀土元素是一种有效的合金化方法,能够显著改善镁合金的综合性能。稀土元素具有独特的物理和化学性质,可以细化晶粒、增强固溶强化效果,并促进热稳定性相的形成,从而提升合金的强度、耐热性和耐腐蚀性。本文运用X射线衍射(XRD)、光学显微镜(OM)、扫描电子显微镜(SEM)以及室温拉伸试验等多种手段,对铸态Mg-1.5Zn-xGd (其中x = 0.5,1.0,1.5)合金的微观组织及其力学性能进行了研究。研究发现,随着Gd含量的增加,合金中的第二相逐渐从I相 + W相转变为单一的W相,晶粒逐渐细化,第二相分布形态从断续分布于晶界处及均匀散布于晶粒内部逐渐转变为连续网络状结构。随着Gd元素的增加,材料的屈服强度先上升后下降,极限抗拉强度和延伸率均先下降后提高,最大值分别为46 MPa、136 MPa、17.3%,室温拉伸断口均呈现解理面与撕裂棱并存的特征,是脆性断裂和韧性断裂相结合的断裂模式。进一步优化Gd的含量及其与其他元素的协同作用,有望开发出具有更优异性能的新型镁合金材料,满足航空航天、汽车工业等领域对高性能轻量化材料的需求。
Adding rare earth elements to magnesium alloys is an effective alloying method, which can significantly improve the comprehensive properties of magnesium alloys. Rare earth elements have unique physical and chemical properties, which can refine the grain, enhance the solid solution strengthening effect, and promote the formation of thermal stability phase, thereby improving the strength, heat resistance and corrosion resistance of the alloy. The microstructure and mechanical properties of as-cast Mg-1.5Zn-xGd alloy (where x = 0.5, 1.0, 1.5) were studied by means of X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM) and tensile test at room temperature. It is found that with the increase of Gd content, the second phase in the alloy gradually changes from I phase + W phase to a single W phase, the grains are gradually refined, and the distribution of the second phase gradually changes from discontinuous distribution at the grain boundaries and uniform distribution in the grain to a continuous network structure. With the increase of Gd, the yield strength of the material first increased and then decreased, and the ultimate tensile strength and elongation both decreased first and then increased, with the maximum values of 46 MPa, 136 MPa and 17.3%, respectively. The tensile fractures at room temperature showed the characteristics of coexisting cleavage plane and tearing edge, which is a fracture mode combining brittle fracture and ductile fracture. Further optimization of Gd content and its synergistic effect with other elements is expected to develop new magnesium alloy materials with better properties to meet the demand for high-performance lightweight materials in aerospace, automotive industry and other fields. %K Mg-Zn-Gd合金, %K 准晶相, %K 微观组织, %K 力学性能
Mg-Zn-Gd Alloy %K Quasi-Crystalline Phase %K Microstructure %K Mechanical Property %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=107264