%0 Journal Article %T Expanding Force in Astronomy and Updraft Force in Meteorology %A Weihong Qian %J Journal of Modern Physics %P 267-285 %@ 2153-120X %D 2025 %I Scientific Research Publishing %R 10.4236/jmp.2025.162013 %X Astronomical extreme events or phenomena include black holes as well as nebulae systems that resemble the Milky Way. Meteorological extreme events or phenomena include tornadoes and tropical cyclones. The new high energy state of matter expanding outwards by spin jets from the two poles of an astronomical black hole, the new high energy state of matter in a funnel-shaped vortex showed a meteorological tornado expanding downwards from a rotated disk of cumulonimbus clouds, the new high energy state of matter in a tropical cyclone and the new high energy state of a nebulae system converging celestial materials are phenomena across disciplines and multiple time-space scales that have not yet been physically explained. In this paper, the theory of orthogonal collision in the rotational contraction continuum is used to unify the understanding of diverse extreme events or phenomena through a single dynamical mechanism, offering insights into natural processes across disciplines. In the field of astronomy, the orthogonal collision of two-beam rotating and contracting particles or stars associated with centripetal forces forms a new high-energy state of matter at the collision point and the new high-energy particles have expanding forces outward to both sides of the collision plane. In the field of meteorology, the orthogonal collision of multiple horizontally rotating and contracting airflows associated with centripetal forces forms a new high energy state of matter at the collision point as well as an updraft force and a downdraft force vertically. The updraft force and downdraft force formed by the collision of anomalous wet airflows in the lower atmosphere can well indicate tornado, thunderstorm and extreme precipitation. The orthogonal collision theory can be applied to explain new states of matter in disciplines from the astronomical scale to the meteorological scale and the Planck scale. %K Astronomy %K Meteorology %K Black Hole %K Tornado %K Expanding Force %K Updraft Force %U http://www.scirp.org/journal/PaperInformation.aspx?PaperID=140603