%0 Journal Article
%T 基于大语言模型的文本生成综述
A Review of Text Generation Based on Large Language Model
%A 刘津睿
%A 都云程
%J Artificial Intelligence and Robotics Research
%P 194-208
%@ 2326-3423
%D 2025
%I Hans Publishing
%R 10.12677/airr.2025.141019
%X 文本生成(Text Generation)是自然语言处理(NLP)领域的一项核心技术。由于自然语言自身的复杂性,在内容创作、人机对话、机器翻译等领域的实际应用需求驱动下,文本生成技术长期以来一直是NLP研究的重点、难点和热点。随着深度学习、预训练语言模型等技术的产生和发展,文本生成技术得到长足发展,而基于Transformer的大语言模型(LLM)的产生,则彻底使文本生成技术取得革命性突破。本文旨在对文本生成的技术、模型、范式等方面的历史和现状进行总结,特别侧重于大语言模型对文本生成在框架模型、技术方案、评估基准等方面所带来的变革,以及大语言模型在文本生成领域的典型应用场景,并对文本生成在大语言模型背景下的技术发展趋势进行展望。
Text generation is a fundamental technology in the field of Natural Language Processing (NLP). Due to the intrinsic complexity of natural language and the practical demands in applications such as content creation, human-computer interaction, and machine translation, text generation has long been a focal point of NLP research, characterized by its challenges and significant research interest. With the development of deep learning and pre-trained language models, text generation technology has made considerable advancements. The emergence of large language model (LLM) based on the Transformer architecture has brought about a paradigm shift, leading to groundbreaking progress in the field. This paper seeks to provide a comprehensive review of the evolution and current state of text generation techniques, models, and paradigms, with a particular emphasis on the transformative impact of LLM on the design frameworks, technical approaches, and evaluation benchmarks in text generation. Furthermore, this paper explores the representative application scenarios of LLM in text generation and discusses future research directions and technological trends in this domain within the context of LLM.
%K 文本生成,
%K 大语言模型,
%K 自然语言处理
Text Generation
%K Large Language Model
%K Natural Language Processing
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=106475