%0 Journal Article
%T 基于密度聚类的三支K-Means聚类算法
Three-Way K-Means Algorithm Based on Density Clustering
%A 李志聪
%A 晏啸昊
%J Computer Science and Application
%P 246-255
%@ 2161-881X
%D 2025
%I Hans Publishing
%R 10.12677/csa.2025.151025
%X 本文提出了一种基于密度聚类的三支K-Means算法。针对传统的K-Means算法在选取初始聚类中心时往往依赖于随机选择和无法处理不确定性数据对象的问题,本文采用基于密度聚类算法优化初始聚类中心的选择,并优化了截断距离的选取,最后使用三支决策的方法对聚类结果进行处理。实验结果表明,与传统的K-Means算法相比,改进的K-Means算法在聚类中表现出更高的聚类精度和稳定性。
This paper proposes a three-branch K-Means algorithm based on density clustering. In view of the problem that the traditional K-Means algorithm often relies on random selection and cannot handle uncertain data objects when selecting initial clustering centers, this paper uses a density-based clustering algorithm to optimize the selection of initial clustering centers, and optimizes the selection of truncation distance. Finally, a three-branch decision method is used to process the clustering results. The experimental results show that the improved K-Means algorithm exhibits higher clustering accuracy and stability in clustering compared to the traditional K-Means algorithm.
%K K-Means算法,
%K 密度聚类,
%K 三支决策
K-Means Algorithm
%K Density Clustering
%K Three-Way Decision-Making
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=106445