%0 Journal Article %T 基于排序损失的跨模态检索优化研究
Research on Optimization of Cross-Modal Retrieval Based on Ranking Loss %A 蒋彩兰 %J Modeling and Simulation %P 116-121 %@ 2324-870X %D 2025 %I Hans Publishing %R 10.12677/mos.2025.141012 %X 跨模态检索通过一种模态(如文本或图像)来检索另一模态的数据,传统的跨模态检索方法主要依赖模态对齐与相似性度量,以实现多模态间的特征匹配。本文创新性地提出了一种基于排序的跨模态检索方法,通过引入排序损失来优化跨模态检索过程,使得与查询相关性高的项目在结果中排名靠前,从而实现跨模态检索。实验结果表明,引入排序损失可显著提升跨模态检索性能,尤其在文本与图像匹配中表现出色,为后续研究提供了新的方法视角和坚实的技术基础。
Cross-modal retrieval aims to retrieve data in one modality (such as text or images) based on another modality. Traditional cross-modal retrieval methods primarily rely on modality alignment and similarity measures to achieve feature matching across multiple modalities. This paper presents an innovative sorting-based cross-modal retrieval method that optimizes the cross-modal retrieval process by introducing ranking loss, allowing items with higher relevance to the query to be prioritized in the results, thereby enhancing cross-modal retrieval effectiveness. Experimental results demonstrate that the introduction of ranking loss significantly enhances the performance of cross-modal retrieval, particularly excelling in text-image matching tasks. This work provides a new methodological perspective and a solid technical foundation for future research in the field. %K 跨模态检索, %K 排序损失, %K 相似性度量
Cross-Modal Retrieval %K Ranking Loss %K Similarity Measure %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=104628