%0 Journal Article
%T 基于编码–解码网络图像信息隐藏算法
Image Information Hiding Algorithm Based on Encoder-Decoder Network
%A 李雅静
%A 丁海洋
%A 熊涛
%J Artificial Intelligence and Robotics Research
%P 765-771
%@ 2326-3423
%D 2024
%I Hans Publishing
%R 10.12677/airr.2024.134078
%X 传统的图像隐写往往倾向于将隐藏信息安全地嵌入到封面图像中,而几乎忽略了有效负载容量。为解决传统隐写容量低的问题,本文采用深度学习与图像信息隐藏相结合的方法。实验结果表明,在嵌入容量上,所提算法达到了24 bpp,是目前容量最大的图像隐写算法之一。在此大容量嵌入的前提下,所提算法生成的载密图像和提取的秘密图像,无论在主观视觉质量还是客观视觉指标峰值信噪比(PSNR)上都高于其他同类算法,说明了设计的端到端隐写网络的整体优越性。
Traditional image steganography methods often focus on securely embedding hidden information into cover images, while paying little attention to the payload capacity. To address the issue of low embedding capacity in conventional steganography, this paper combines deep learning with image information hiding techniques. Experimental results show that the proposed algorithm achieves an embedding capacity of 24 bpp, making it one of the highest-capacity image steganography algorithms to date. Despite the large embedding capacity, the stego-images generated by the algorithm and the extracted secret images outperform other similar algorithms in both subjective visual quality and objective visual metrics such as Peak Signal-to-Noise Ratio (PSNR). This demonstrates the overall superiority of the designed end-to-end steganography network.
%K CNN,
%K 深度学习,
%K 信息隐藏,
%K 大容量
CNN
%K Deep Learning
%K Information Hiding
%K High Capacity
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=100666