%0 Journal Article %T Optimizing the LSTM Deep Learning Model for Arctic Sea Ice Melting Prediction %A Victoria Pegkou Christofi %A Xiaodi Wang %J Atmospheric and Climate Sciences %P 429-449 %@ 2160-0422 %D 2024 %I Scientific Research Publishing %R 10.4236/acs.2024.144026 %X The National Oceanic and Atmospheric Administration reports a 95% decline in the oldest Arctic ice over the last 33 years [1], while the National Aeronautics and Space Administration states that summer Arctic Sea Ice Extent (SIE) is shrinking by 12.2% per decade since 1979 due to warmer temperatures [2]. Given the rapidly changing Arctic conditions, accurate prediction models are crucial. Deep learning models developed for Arctic forecasts primarily focus on exploring convolutional neural networks (CNN) and convolutional Long Short-Term Memory (LSTM) networks, while the exploration of the power of LSTM networks is limited. In this research, we focus on enhancing the performance of an LSTM network for predicting monthly Arctic SIE. We leverage five climate and atmospheric variables, validated for their correlation with SIE in prior studies [3]. We utilize the Spearman’s rank correlation and ExtraTrees regressor to enhance our understanding of the importance of the five variables in predicting SIE. We further enhance our predictor variables with seasonal information, lagged time steps, and a linear regression simulated SIE that accounts for the influence of past SIE on current SIE. Statistical methods guide our selection of data scalers and best evaluation metrics for our model. By experimenting with hyperparameter optimization and advanced deep learning training techniques, such as batch sizes, number of neurons, early stopping, and model checkpoint, our model achieved a Mean Absolute Error (MAE) of 0.191 and R2 of 0.996, underscoring its ability to account for nearly all the variance in our data and holds great promise for the prediction of SIE. %K Arctic %K Sea Ice Extent %K Deep Learning %K Long Short-Term Memory Networks %K Climate Change %U http://www.scirp.org/journal/PaperInformation.aspx?PaperID=136564