%0 Journal Article %T 时间周期环境下具有脉冲的退化反应-扩散病毒感染模型的空间动力学
Spatial Dynamics of a Time-Periodic Degenerated Diffusive Virus Infection Model with Pulse Vaccination %A 宋鹏宇 %J Advances in Applied Mathematics %P 3356-3372 %@ 2324-8009 %D 2024 %I Hans Publishing %R 10.12677/AAM.2024.137321 %X 本文通过脉冲接种的时间周期退化反应-扩散病毒感染模型研究了病毒的传播。 建立了周期行波 传播速度的存在性及其与最小传播速度的一致性。 该模型面临两个主要挑战:一是部分退化导致 解映射缺乏紧性;二是该模型的非线性项是非合作的。 克服这些挑战涉及到利用渐近不动点定理, 并借助于Kuratowski非紧测度的一些性质。
This study is devoted to the investigation of virus spread via a time-periodic degener- ated reaction-diffusion virus infection model with pulse vaccination. We establish the existence of spreading speed and its coincidence with the minimal speed of periodic traveling waves. Two main challenges are encountered in this model: firstly, the par- tially degenerate case leads to the lack of compactness for solution maps, and secondly, the nonlinearity of this model isn’t cooperative. Overcoming these challenges involves the utilization of the asymptotic fixed point theorem with the help of some properties of the Kuratowski measure of noncompactness. %K 病毒感染模型,退化扩散,脉冲预防接种,最小传播速度,行波解
Virus Infection Model %K Degenerated Diffusion %K Pulse Vaccination %K Spreading Speed %K Traveling Waves %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=92026