%0 Journal Article %T 关于von Neumann代数上的几种算子拓扑的研究
A Study of Several Operator Topologies on von Neumann Algebras %A 杨森 %J Advances in Applied Mathematics %P 3170-3174 %@ 2324-8009 %D 2024 %I Hans Publishing %R 10.12677/aam.2024.137302 %X 设A是作用于Hilbert空间?上的C?-代数,B(K)是作用于Hilbert空间?上的von Neumann代数。本文讨论了C?-代数A到von Neumann代数B(K)的线性映射在σ-强算子拓扑和σ-弱算子拓扑下的连续性。
LetAbe theC?-algebra acting on the Hilbert space?, andB(K)be the von Neumann algebra acting on the Hilbert space?. In this paper, we discuss the continuity of linear maps fromC?-algebraAto von Neumann algebraB(K)inσ-strong operator topology andσ-weak operator topology. %K -代数,Von Neumann代数,-强算子拓扑,-弱算子拓扑,连续
-Algebra %K von Neumann Algebra %K -Strong Operator Topology %K -Weak Operator Topology %K Continuous %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=91613