%0 Journal Article
%T 一类三元幕函数的差分均匀度
The Differential Uniformity of a Class of Ternary Power Function
%A 袁文萍
%J Advances in Applied Mathematics
%P 3592-3599
%@ 2324-8009
%D 2024
%I Hans Publishing
%R 10.12677/AAM.2024.138342
%X S盒(S-boxes)作为分组密码算法中唯一的非线性组件,其性质的好坏对密码算法的安全性至关重 要。 为衡量S盒抵抗差分密码攻击性质的好坏,Nyberg在欧洲密码年会上提出了差分均匀度的 概念。 差分均匀度越小,IS盒的差分密码性质越好。 因此,找寻具有较低差分均匀度的函数来 构造S盒成为了如今密码学研究领域的一个热点。 具有低差分的幕函数因为其特殊的代数结构和 对硬件消耗低等特点,所以往往作为设计S盒的备选函数。 本文,我们研究了F3n 上的一类幕函数
,其中n是偶数。 然后通过对奇特征有限域上二次方程的解的个数进行分析,我们确定了三元幕函数F 差分均匀度的上界。 结果表明F 是一个差分均匀度不超过9的函数。
Substitution boxes (S-boxes) as the only nonlinear component in block ciphers algo- rithm, the quality of its properties is crucial to the security of cryptographic algorithm-
s. In order to measure the properties of S-boxes to resist differential cryptography attacks, Nyberg proposed the concept of differential uniformity at the European Cryp- tography Annual Conference. The lower the differential uniformity of F is, the better the differential cryptographic properties of S-boxes have. Therefore, finding a function with low differential uniformity to construct S-boxes has become a hot topic in the field of cryptography research today. Power functions with low differential uniformi- ty are often used as alternative functions for S-boxes design because of their special
algebraic structure and low hardware consumption. In this paper, we study a class of power functions
over F3n , where n is an even. Then, by considering the number of solutions on the quadratic equation over finite field with odd characteristic, the upper bound of the differential uniformity is determined. The results show that F is a function with differential uniformity no more than 9.
%K 幕函数,差分均匀度,二次方程,有限域
Power Function
%K Differential Uniformity
%K Quadratic Equation
%K Finite Field
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=92685