%0 Journal Article %T 二维非线性对流扩散问题的Galerkin方法
Galerkin’s Method for Two-Dimensional Nonlinear Convection-Diffusion Problems %A 罗宏 %J Advances in Applied Mathematics %P 3585-3591 %@ 2324-8009 %D 2024 %I Hans Publishing %R 10.12677/AAM.2024.138341 %X 本文研究了一种具有狄利克雷边界的二维非线性对流扩散方程的Galerkin有限元法。 基于一 种具有两个内置参数的特殊变分形式,提出了半离散Galerkin有限元格式,并且理论上导出 了半离散Galerkin有限元格式H1范数下最优误差估计。 给出两个数值实验,时间方向分别采 用Grank-Nicolson格式和向后欧拉格式进行离散,验证理论分析结果。
In this paper, a Galerkin finite element method for a two-dimensional nonlinear convection-diffusion equation with a Delicacy boundary is investigated. Based on a special variational form with two built-in parameters, a semi-discrete Galerkin finite element format is proposed, and the optimal error estimate in the H1 paradigm of the semi-discrete Galerkin finite element format is derived theoretically. Two numerical experiments are given, where the time direction is discretised in Grank-Nicolson for- mat and backward Eulerian format, respectively, to validate the theoretical analysis. %K 非线性对流扩散方程,Galerkin有限元法,误差估计
Nonlinear Convection-Diffusion Equation %K Galerkin Finite Element Method %K Error Estimation %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=92668