%0 Journal Article %T 有限群的s-半置换子群
Finite Groups with Some s-Semipermutable Subgroups %A 徐向阳 %A 李样明 %A 刘小伟 %J Advances in Applied Mathematics %P 3220-3226 %@ 2324-8009 %D 2024 %I Hans Publishing %R 10.12677/AAM.2024.137308 %X 设G为有限群, H为G的子群。 若对G的任意满足(|P |, |H|) = 1的Sylow 子群P , 都有GpH = HGp成立,则称H为G的s-半置换子群。 本文,我们主要探究具有若干s-半置换子群的有限群的结构。 我们的结论推广了前人的若干结果。
Suppose that G is a finite group and H is a subgroup of G. We say that H is s- semipermutable in G if HGp = GpH for any Sylow p-subgroup Gp of G with (p, |H|) = 1. We investigate the influence of s-semipermutable subgroups on the structure of finite groups. Some recent results are generalized. %K s-半置换子群,Sylow p-子群,p- 超可解群,最小生成元数
s-Semipermutable Subgroup %K Sylow p-Subgroup %K p-Supersoluble Sroup %K Minimum Generative Element %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=91770