%0 Journal Article %T 非定常渗透对流模型一阶分数步长算法的时间误差估计
Temporal Error Estimate of First-Order Fractional Step Algorithm for Unsteady Penetrative Convection Model %A 田耕耘 %J Advances in Applied Mathematics %P 3039-3051 %@ 2324-8009 %D 2024 %I Hans Publishing %R 10.12677/aam.2024.137289 %X 本文研究了求解非定常渗透对流模型的一阶分数步长时间离散算法,该方程是由非定常不可压缩Navier-Stokes方程和热传导方程所耦合的非线性多物理场模型。该算法的优点在于将Navier-Stokes方程的非线性性和不可压缩性进行分离,实现算法的高效性。理论上,在解的正则性假设下,我们得到了速度场和温度场一阶时间收敛阶。最后通过数值算例验证了所得到的收敛性结果。
In this paper, the first-order fractional-step time-discretization algorithm for solving the unsteady penetrative-convection model is studied. This equation is a nonlinear multi-physical model coupled by the unsteady incompressible Navier-Stokes equation and the heat conduction equation. The advantage of the algorithm is that the nonlinearity and incompressibility of the Navier-Stokes equations are separated to realize the high efficiency of the algorithm. Theoretically, under the assumption of the regularity of the solution, we obtain the first-order temporal convergence order of the velocity field and the temperature field. Finally, the convergence results are verified by numerical examples. %K 非定常渗透对流模型,分数步长法,时间误差估计
Unsteady Penetrative Convection Model %K Fractional Step Algorithm %K Temporal Error Estimates %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=91169