%0 Journal Article
%T 基于多组学融合和对抗自编码器的生存分析模型
A Survival Analysis Model Based on Multi-Omics Integration and Adversarial Autoencoder
%A 苗馨予
%A 殷清燕
%A 张丽丽
%J Advances in Applied Mathematics
%P 2627-2640
%@ 2324-8009
%D 2024
%I Hans Publishing
%R 10.12677/aam.2024.136251
%X 多组学整合分析可以利用不同组学之间的互补信息,有利于系统全面地理解癌症疾病的分子生物学机制。多组学数据的高维小样本属性,导致传统的生存分析模型存在严重的过拟合问题。深度学习模型可以从高维数据中进行自动特征提取,在处理复杂的多组学数据方面具有显著优势。为了有效地整合多组学数据,本文提出了基于对抗自编码器的多组学特征提取网络。结合1D-CNNCox生存分析模型,构建了基于多组学融合和生成对抗网络的GAN-1DCCox模型。在8种不同癌症类型的TCGA数据集上进行了消融和对比实验,相比流行的生存分析基准模型,GAN-1DCCox模型取得了更高的C指数值。结果表明GAN-1DCCox模型能够有效地融合多组学数据,筛选出重要的预后特征基因,提升了模型的生存预测性能和稳健性。
Multi-omics integration analysis can utilize complementary information from different omics, beneficial for a more systematic and comprehensive understanding of the molecular biology mechanisms of cancer diseases. The high-dimension small-sample size of multi-omics data leads to serious overfitting issues in traditional survival analysis models. Deep learning models can automatically extract features from high-dimensional data and have significant advantages in processing complex multi-omics data. In this study, we proposed a survival analysis model based on multi-omics integration and adversarial autoencoder, called GAN-1DCCox model, which consists of a multi-omics feature extraction module based on generative adversarial networks and a 1D-CNNCox survival analysis module. GAN-1DCCox model achieved the highest C-index values in both ablation and comparative experiments on TCGA datasets of 8 different cancer types. It indicates that GAN-1DCCox model can effectively integrate multi-omics data and screen out important prognostic signature genes, and thereby improving the prediction performance and robustness of survival analysis model.
%K 生存分析,多组学融合,对抗自编码器,生成对抗网络
Survival Analysis
%K Multi-Omics Integration
%K Adversarial Autoencoder
%K Generative Adversarial Network
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=89226