%0 Journal Article
%T 基于几何QSR-耗散性和线性静态输出反馈控制器的非线性随机离散系统的几何镇定
Geometric Stabilization of NonlinearStochastic Discrete-Time SystemsBased on Geometric QSR-Dissipativity andLinear Static Output Feedback Controller
%A 杨帆
%A 温鑫湲
%A 任院红
%A 白雪洁
%J Pure Mathematics
%P 377-393
%@ 2160-7605
%D 2024
%I Hans Publishing
%R 10.12677/PM.2024.145194
%X 本文研究了非线性随机离散系统的几何镇定问题。 首先,引入了非线性随机离散系统的几何随机增量QSR耗散的概念,并给出了该概念的线性矩阵不等式(LMI)表示形式;其次,基于几何随机 增量QSR耗散性和线性静态输出反馈控制器,提出了该系统的概率意义下的几何均方增量稳定的 充要条件。 最后,通过进行数值模拟,展示了所得结论的有效性。
In this paper, the geometric stabilization problem of nonlinear stochastic discrete-
time systems is studied. Firstly, the concept of geometric stochastic incremental
QSR dissipativity for nonlinear stochastic discrete-time systems is introduced, and
the expression of the concept of linear matrix inequality (LMI) is given. Secondly,
based on the geometric stochastic incremental QSR dissipativity and the linear static
output feedback controller, the sufficient and necessary conditions for the geometric
mean square incremental stability in probability of the system are proposed. Finally,
the validity of the results is demonstrated by numerical simulation.
%K 几何随机增量QSR耗散,几何均方增量稳定,线性静态输出反馈控制器
Geometrically Stochastically Incrementally QSR-Dissipative
%K Geometrically Mean Square Stable
%K Linear Static Output Feedback Controller
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=88711